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V. Introduction

An investigation of three-dimensional ultrasonic mammography is underway. The goal
of the research is improved diagnosis of breast cancer by quantitative, high-resolution three-
dimensional ultrasonic imaging. This goal is being reached by a thorough program that
synthesizes recent advances in tissue modeling, adaptive imaging, instrumentation, and sig-
nal processing. The final result of the research will be a major advance in quantitative
three-dimensional ultrasonic mammography. Improved resolution, accurate quantitative in-
formation on tissue properties, and precise determination of three-dimensional breast struc-
ture will provide crucial new information for detection, diagnosis, and monitoring of breast
cancer. The goal of three-dimensional quantitative imaging is currently being achieved using
novel inverse scattering methods invented by the Principal Investigator and coworkers. Use of
full time-domain scattering information provides images with high point resolution, contrast
resolution, and quantitative accuracy without significant artifacts. Nonlinear forms of these
methods provide a robust approach to adaptive imaging that is based on compensation for
three-dimensional scattering from actual tissue structure. Unlike previous adaptive imaging
methods based on assumptions of phase-screen aberrators and point scatterers, these meth-
ods provide aberration correction ideally suited to distributed inhomogeneous tissue like the
breast. A unique and innovative aspect of the research is the use of realistic tissue models
for ultrasonic propagation through breast tissue. Such models have been shown to realisti-
cally model wavefront distortion in the human abdominal wall, but have not to date been
applied to the human breast. Tissue modeling techniques employ tissue maps obtained from
specimen cross sections as well as from newly available high-resolution volume photographic
data. Calculated scattering from these tissue models will provide accurate characterization
of ultrasonic propagation within breast tissue and will also provide realistic data for quanti-
tative imaging algorithms. The above studies will facilitate the application of breakthroughs
from tissue modeling, inverse scattering, and signal processing to the critical application
of ultrasonic mammography. Completion of the proposed research will make possible new
mammographic applications of ultrasound that will provide clinicians with previously un-
available information and detail. The end result will be a lower-cost, more effective, and
safer modality for diagnosis, detection, and monitoring of breast cancer.




VI. Body of Report

Below, the accomplishments of the first year for this project are summarized under the
four categories of the approved Statement of Work. Details are given for how accomplish-
ments to date fit into the overall research plan. Where applicable, brief descriptions of
planned research indicate how the remainder of the Statement of Work will be fulfilled.

A. Quantitative Imaging Algorithm Development

In the first year of this USAMRMC-funded Breast Cancer Research Program project,
great progress has been made on development of new quantitative imaging algorithms for
three-dimensional ultrasonic mammography. Research on algorithm development has oc-
curred in two areas: (1) a new time-domain diffraction tomography method for wideband
quantitative imaging and (2) nonlinear extensions to a novel eigenfunction-based inverse
scattering method.

The new time-domain diffraction tomography method [1, 2], which is specifically designed
for ultrasonic mammography, allows quantitative, high-resolution images to be obtained us-
ing direct synthetic-aperture processing of time-domain scattered fields. This method pro-
vides tomographic images of inhomogeneous media using scattering measurements made on
a surface surrounding the medium of interest, e.g., on a circle for two-dimensional problems
or on a sphere for three-dimensional problems. Images of compressibility variations are then
reconstructed using coherent combination of the far-field scattered waveforms, delayed and
summed in a manner that numerically focuses on the unknown medium. This approach
is closely related to synthetic aperture imaging; however, unlike conventional synthetic-
aperture methods, the present method provides quantitative reconstructions of compressibil-
ity variations, analogous to frequency-compounded filtered backpropagation images weighted
by the spectrum of the incident wave. A complete description of the method, with example
two-dimensional and three-dimensional reconstruction results, is given in Ref. [2], included
as Appendix A of this report. A brief abstract describing the work, presented at Forum
Acusticum 99, is included in Appendix D.

The results of the new time-domain imaging method are exciting for several reasons.
First, the images are both higher in quality and more efficiently computed than conventional
single-frequency quantitative images. The high point and contrast resolution, as well as
absence of artifacts usually associated with diffraction tomography, suggests that this method
will be very useful for detection and characterization of breast lesions. Second, because of
the close analogy between the new method and delay-and-sum imaging, the new method
could be implemented in hardware using beamforming technology already present on digital
ultrasound scanners. Furthermore, the new time-domain method can easily incorporate
other imaging techniques (e.g., time-gain compensation, harmonic imaging, and aberration
correction) currently used in clinical and experimental B-scan systems.

Work was also performed on nonlinear (aberration-corrected) implementation of a
method for quantitative imaging using eigenfunctions of the scattering operator [3]-[4]. A
1998 presentation of this method at a meeting of the American Institute of Ultrasound in
Medicine [5] was received with interest. Preliminary work on iterative nonlinear inverse




scattering, with application to quantitative imaging of strongly scattering media such as the
human breast, shows promise for the potential of aberration correction to improve quantita-
tive ultrasonic mammography.

Work on algorithm development will continue with synthesis of wideband time-domain
inverse scattering together with aberration correction based on quantitative estimates of
the unknown medium. Since these estimates are obtained directly from inverse scattering
reconstructions, iterative reconstruction procedures will provide the highest quantitative
accuracy available for the data. Since the nonlinear eigenfunction method provides a simple
approach to aberration correction (improved reconstructions are obtained using numerical
retransmission of eigenfunctions into the estimated medium), this procedure is much more
efficient than other available nonlinear inverse scattering methods. This form of nonlinear
aberration correction, in conjunction with the new time-domain imaging method described
above, provide all the capabilities required for the proposed method of three-dimensional
quantitative ultrasonic mammography.

B. Tissue Modeling

Progress toward improved scattering models for ultrasound-breast tissue interaction has
been made in several related studies.

A finite-difference time-domain simulation of ultrasonic propagation through cross-
sectional models of chest wall tissue [6, 7] has generated several important results that are
directly relevant to the planned simulation of propagation through breast tissue. First, this
work expands upon previous models [8, 9] by including tissue-dependent absorption effects.
The absorption model developed will be an important part of the planned two-dimensional
and three-dimensional simulations of ultrasonic scattering from breast tissue. Second, the
chest study contained an analysis of the frequency dependence of ultrasonic wavefront dis-
tortion. A comparison of distortion effects for varying pulse center frequencies showed that,
for soft tissue paths through the chest wall, energy level and waveform distortion increase
markedly with rising ultrasonic frequency and that arrival-time fluctuations increase to a
lesser degree. Since breast tissue has been observed to be more strongly scattering than
other soft tissues [10], these results are of particular importance for ultrasonic mammogra-
phy. A full description of this study, with numerical results including statistical summaries,
is given in Ref. [7], included here as Appendix B. An abstract describing the work, presented
at the 136th Meeting of the Acoustical Society of America, is included in Appendix D.

In accordance with the Statement of Work, scattering has been computed for canonically-
shaped inhomogeneities including spheres, cylinders, and rectangular slabs. Time-domain
scattered fields were computed using exact solutions [12] for spheres and cylinders with sound
speed and density different from the surrounding medium. Time-domain scattered fields were
also computed, using a weak scattering approximation, for rectangular slabs with a sound
speed different from the surrounding medium. The purpose of these computations was to
provide definitive test data for quantitative imaging algorithms. Example reconstructions
based on these computations are provided in Ref. [2], provided as Appendix A.

A new k-space method was implemented for simulating wave propagation in soft tissue
[11]. Numerical results, including quantitative comparisons of accuracy, showed that the k-




space method can achieve very accurate results for large-scale ultrasonic propagation through
soft tissue. The computational efficiency obtained with the new k-space method is much
greater than that of existing finite difference or pseudospectral methods. The method is
described and quantitatively analyzed in Ref. [11], included here as Appendix C. Because
of the remarkable accuracy and efficiency of the new k-space method, a three-dimensional
version of this method will be employed for three-dimensional scattering computations in the
remainder of this project. A three-dimensional version of the k-space code, incorporating
the absorption model of Ref. [7] (Appendix B) as well as absorbing boundary conditions,
has been implemented and is ready for use with breast tissue models. The existing code is
also fully parallelizable, since most of the computational load is associated with execution
of multithreaded fast Fourier transform computations.

Work is currently ongoing for optimization of speed and accuracy of the k-space method
for scattering computations. Preliminary comparisons between the k-space code and a com-
mercial pseudospectral code have shown that the k-space code allows accurate results to be
obtained with much larger time steps and fewer independent variables, so that the k-space
code is superior both in computational speed and in storage requirements. Both of these
considerations are critical for the planned three-dimensional computations of scattering from
breast tissue.

Now that a robust, efficient three-dimensional method for computation of ultrasonic prop-
agation is available, work on mapping of breast tissue has begun in earnest. In collaboration
with colleagues at the University of Rochester, cross-sectional breast tissue specimens have
been sectioned and stained for high-resolution segmentation by tissue type. A license for
use of the Visible Woman data set has been obtained; the second year of the project will
include a substantial effort to construct three-dimensional tissue maps from the provided
photographic, x-ray, and MRI data.

C. Quantitative Imaging Algorithm Implementation

Implementation of quantitative imaging algorithms, including the time-domain diffrac-
tion tomography method and the nonlinear eigenfunction method described above, has to
date been primarily performed using simulated data. Quantitative reconstructions performed
using the time-domain diffraction tomography method are shown in Ref. [2] (Appendix A)
for simulated two-dimensional and three-dimensional scattering data. These results are
promising for ultrasonic mammography. As discussed below in section D (Evaluation and
Comparison of Results), time-domain quantitative images show parametric accuracy, high
resolution, and few artifacts. Effects of limited scattering data, shown in Fig. 3 of Appendix
A for the 2D case, indicate that accurate images can be obtained without the necessity of
apertures that entirely enclose the breast.

Experimental testing of the new time-domain quantitative imaging method, in collabo-
ration with colleagues at the University of Rochester, is now beginning. Tissue-mimicking
phantoms composed of agar gel with glass spheres have been constructed. An anthropomor-
phic breast-mimicking phantom, developed in collaboration between General Electric, Uni-
versity of Wisconsin, and University of Rochester, is also available for testing. Time-domain
scattering data, to be taken with the 2048-element University of Rochester ring transducer




[13] will be used as input for testing of the new time-domain quantitative imaging method.
Both 2D and 3D reconstructions will be performed.

As proposed in the original Statement of Work, a nonlinear, aberration-corrected version
of the new time-domain inverse scattering method will also be implemented and tested with
simulated data (from the breast tissue models described above in section B, Tissue Modeling)
as well as experimental data. The same data will be used as input for standard synthetic-
aperture imaging, so that image quality and accuracy can be directly compared.

D. Evaluation and Comparison of Results

Analysis of the time-domain imaging results for simulated data is given in Ref. [2] (Ap-
pendix A). These results indicate that high quantitative accuracy can be achieved. Compu-
tations of point-spread functions (Fig. 2 in Appendix A) show that the time-domain method
yields higher point and contrast resolution than single-frequency diffraction tomography. For
the 3D case, the level of the first sidelobe is reduced by 13 dB, while the second sidelobe is
reduced by 18 dB. Because of the broadband scattering information employed, the width of
the main lobe indicates point resolution of features smaller than one-half wavelength at the
center frequency. Evaluation of quantitative accuracy (Fig. 4) shows that the time-domain
diffraction tomography method provides parametric accuracy similar to established single-
frequency methods while showing much more immunity from artifacts. Similar quantitative
analysis will be performed for images obtained using the nonlinear aberration-corrected in-
verse scattering method mentioned above.

Two-dimensional and three-dimensional reconstructions performed using the new time-
domain quantitative imaging method will be directly compared to analogous images from
other modalities such as x-ray computed tomography and conventional B-scan ultrasound.
Consultants Dr. Jon Meilstrup, Dr. Claudia Kasales, and Dr. Carroll Osgood will help with
this portion of evaluation and comparison of results. Although the original statement of
work defers this image evaluation task until the third year of the project, this work may
begin during the second year if no unanticipated experimental difficulties are encountered.

Regarding the task of publishing results in archival journals, the first year of the project
has already resulted in three submitted manuscripts. Further publications planned to be
prepared during the next year will be based on experimental testing of the new time-domain
quantitative imaging method, optimization and benchmarking of the k-space algorithm, and
scattering computations employing realistic breast tissue models.




VII. Key Research Accomplishments
The key research accomplishments to date in this project can be summarized as follows:

e Development of a new time-domain quantitative imaging method designed specifically
for ultrasonic mammography.

e Numerical implementation and testing of the new time-domain imaging method, show-
ing that this method provides high accuracy with greater efficiency than previous in-
verse scattering methods.

e Implementation of a nonlinear aberration-corrected eigenfunction inverse scattering
method.

e Implementation of a tissue-dependent absorption model for simulations of scattering
and propagation.

e Characterization of the frequency dependence of ultrasonic scattering from human soft
tissues.

e Exact computation of time-domain scattering from simple objects for testing of quan-
titative imaging methods.

e Implementation and testing of a new k-space method for computation of scattering,
indicating that the method is accurate and extremely efficient, and therefore ideal for
the proposed 3D computations of scattering from breast tissue.

e Extension of the new k-space method to include tissue-dependent absorption, absorbing
boundary layers, and three-dimensional scattering.

e Use of the k-space method to compute time-domain scattering data for testing of
quantitative imaging algorithms.

e Quantitative analysis of inverse scattering results, indicating that time-domain recon-
structions provide much higher point resolution, contrast resolution, and freedom from
artifacts than single-frequency reconstructions.

VIII. Reportable Outcomes

Reportable outcomes for the research have, to date, included three papers submitted
to archival journals (Refs. [2], [7], and [11]), as well as two published abstracts presented
at scientific meetings (Refs. [1] and [6]). All of these publications, as well as a current
Curriculum Vitae for the Principal Investigator, are included below in the Appendices.
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IX. Conclusions

The first year of this USAMRMC-funded project has yielded considerable progress toward
the goal of improved diagnosis of breast cancer by three-dimensional ultrasonic imaging.
Several breakthroughs have been made which will provide a solid foundation for the continued
tissue modeling and quantitative imaging research planned for the last two years of the
project.

A major breakthrough has been the invention and implementation of a new time-domain
diffraction tomography method designed for ultrasonic mammography. This method is po-
tentially of very great importance for breast cancer diagnosis for several reasons: (1) images
have higher quality than that achievable by conventional inverse scattering methods or by
current ultrasound scanners, (2) tissue parameters are computed and quantitatively imaged
with high accuracy, and (3) the close analogy between the new method and conventional
synthetic-aperture imaging will allow rapid implementation of the new method on hardware
similar to currently used beamformers. The additional improvement of aberration correction
should increase the value of this method even more, because the strong scattering inherent
to breast tissue is an important limiting factor to existing ultrasonic imaging methods.

In the area of breast tissue modeling, simulation methods have been developed that
will allow efficient computation of scattering from fully three-dimensional models of breast
tissue. A model for tissue absorption, important for realistic simulation of scattering in
breast tissue, has been implemented. The frequency dependence of ultrasonic scattering
from soft tissue has been shown to be a critical consideration for aberrating media such as
the breast. A new k-space method has been implemented, shown to provide remarkable
accuracy and efficiency, and extended to include absorbing boundary conditions as well as
tissue-dependent ultrasonic absorption. A three-dimensional implementation of this method
is already in place and is ready for computations based on realistic breast tissue models.

Future work based on these breakthroughs will follow the approved Statement of Work.
Plans for the next year of research include extension of time-domain inverse scattering to
include aberration correction, testing of the new quantitative imaging algorithm using mea-
sured scattering data, construction of realistic breast tissue models from cross-sectional and
volume data, and computation of ultrasonic propagation through these tissue models. In
the third year of the project, definitive aberration-corrected reconstructions will be com-
puted both for measured scattering data from breast-mimicking phantoms and for simulated
scattering data using detailed breast models. These results will be carefully evaluated for
accuracy and clinical utility, in collaboration with the named clinical consultants.

The final outcome of the successfully completed project will be a novel method for early
detection, characterization, and treatment monitoring of breast cancer lesions. Results to
date indicate that the final method will provide image quality and diagnostic information
greatly superior to current 2D and 3D ultrasonic mammography methods The finally re-
sulting method is expected to be competitive with magnetic resonance imaging and x-ray
computed tomography as a tool for breast cancer diagnosis, while maintaining inherent ad-
vantages of ultrasound such as lower cost, ability to characterize cystic and solid lesions, and
safe nonionizing radiation.
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Abstract

A quantitative ultrasonic imaging method employing time-domain scatter-
ing data is presented. This method provides tomographic images of medium
properties such as the sound speed contrast; these images are equivalent to
multiple-frequency filtered-backpropagation reconstructions using all frequen-
cies within the bandwidth of the incident pulse employed. However, image
synthesis is performed directly in the time domain using coherent combination
of farfield scattered pressure waveforms, delayed and summed to numerically
focus on the unknown medium. The time-domain method is more efficient
than multiple-frequency diffraction tomography methods, and can, in some
cases, be more efficient than single-frequency diffraction tomography. Exam-
ple reconstructions, obtained using synthetic data for two-dimensional and
three-dimensional scattering of wideband pulses, show that the time-domain
reconstruction method provides image quality superior to single-frequency
reconstructions for objects of size and contrast relevant to medical imaging
problems such as ultrasonic mammography. The present method is closely re-
lated to existing synthetic-aperture imaging methods such as those employed
in clinical ultrasound scanners. Thus, the new method can be extended to in-
corporate available image-enhancement techniques such as time-gain compen-
sation to correct for medium absorption and aberration correction methods

to reduce error associated with weak scattering approximations.
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INTRODUCTION

Quantitative imaging of tissue properties is a potentially useful technique for diagnosis
of cancer and other pathological conditions. Inverse scattering methods such as diffraction
tomography can provide quantitative reconstruction of tissue properties including sound
speed, density, and absorption. However, although previous inverse scattering methods
have achieved high resolution and quantitative accuracy, such methods have not yet been
incorporated into commercially successful medical ultrasound imaging systems.

Current inverse scattering methods are lacking in several respects with respect to conven-
tional B-scan and synthetic aperture imaging techniques. Previous methods of diffraction
tomography, including methods based on the Born approximation, the Rytov approxima-
tion, and higher-order nonlinear approaches, have usually been based on single-frequency
scattering (e.g., Refs. 1-11) while current diagnostic ultrasound scanners employ wideband
time-domain signals. The use of wideband information in image reconstruction is known to
provide increased point and contrast resolution,'®!3 both of which are important for medical
diagnosis. %1415

Several approaches have been used to incorporate wideband scattering information into
quantitative ultrasonic imaging. One group of methods employs time-domain tomography
based on Radon-transform relationships that hold (under the assumption of weak scattering)
between scattered acoustic fields and the reflectivity or scattering strength of the medium.
Pioneering studies in this areal®'® employed measurements of reflectivity in pulse-echo

mode, while later studies have incorporated aberration correction'®2

and multiple-angle
scattering measurements.? 2 A limitation of these methods, however, is that the Radon
transform relationship strictly holds only when the medium is insonified by an impulsive
(infinite bandwidth) wave. When pulses of finite bandwidth are employed, image quality
can degrade significantly.?*

A number of linear and nonlinear diffraction tomography methods have been imple-
mented using scattering data for a number of discrete frequencies (e.g., Refs. 25-32). Al-
though use of multiple-frequency data provides improvements in image quality, computa-
tional requirements for multiple-frequency imaging are typically large because the computa-
tional cost is proportional to the number of frequencies employed. To achieve image quality

competitive with present diagnostic scanners, together with quantitative imaging of tissue

properties, present frequency-domain methods may require solution of the inverse scatter-
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ing problem for many frequencies within the bandwidth of the transducer employed. This
approach thus demands a high computational cost, so that high-quality real-time imaging
may not be presently feasible using current frequency-domain inverse scattering methods.

Very few previous workers have investigated direct use of time-domain waveform data for
inverse scattering methods analogous to frequency-domain diffraction tomography. Several
methods333* have used frequency decomposition of scattered pulses to construct a wide-
band estimate of the spatial Fourier transform of an unknown medium; after appropriate
averaging and interpolation, this transform can be inverted to obtain a wideband Born
reconstruction of the medium. A study reported in Ref. 35 has showed that broadband
synthetic aperture imaging using linear arrays is closely related to inverse scattering using
filtered backpropagation. Another method, suggested in Ref. 36, provides a time-domain
reconstruction algorithm that employs filtered backpropagation of scattered fields measured
on a circular boundary. However, the time domain reconstruction formula of Ref. 36 yields
reconstructions that are less general than multiple-frequency reconstructions obtained using
the same signal bandwidth.

The present paper offers a new approach to wideband quantitative imaging: a time-
domain inverse scattering method that overcomes some of the limitations of previous
frequency-domain and time-domain quantitative imaging methods. The new method pro-
vides tomographic reconstructions of unknown scattering media using the entire available
bandwidth of the signals employed. Reconstructions are performed using scattering data
measured on a surface surrounding the region of interest, so that the method is well suited
to ultrasonic mammography. The reconstruction algorithm is derived as a simple delay-and-
sum formula similar to synthetic-aperture algorithms employed in conventional clinical scan-
ners. However, unlike current clinical scanners, the present method can provide quantitative
images of tissue properties such as the spatially-dependent sound speed. Reconstructions ob-
tained in this manner are equivalent to reconstructions obtained by combining conventional
frequency-domain diffraction tomography reconstructions for all frequencies within the sig-
nal bandwidth of interest. The current method, however, can be even more efficient than
single-frequency diffraction tomography. The method is applicable both to two-dimensional
and three-dimensional image reconstruction. The direct time-domain nature of the recon-
struction algorithm allows straightforward incorporation of depth- and frequency- dependent
amplitude correction to compensate for medium absorption as well as aberration correction

methods to overcome limits set by the Born approximation.




T. D. Mast, submitted to J. Acoust. Soc. Am. 5

v

I. THEORY

A. The time-domain reconstruction algorithm

An inverse scattering algorithm, applicable to quantitative imaging of tissue and other
inhomogeneous media, is derived below. For simplicity of derivation, the medium is modeled

as a fluid medium defined by the sound speed variation

")/(I') = C(I‘)2 -1, (1)

where ¢ is a background sound speed and c(r) is the spatially-dependent sound speed
defined at all points r. For the scope of the initial derivation, the medium is assumed
to have constant density, no absorption, and weak scattering characteristics; extensions to
the reconstruction algorithm that overcome these limiting assumptions are discussed in the
following section.

For the model of the scattering medium represented by Eq. (1), the time-domain scattered

acoustic pressure p,(r,t) obeys the wave equation®’

2 1 &py(x,t) _ y(r) 8%p(r,1)
Veps(r,2) & o2 g o’ 2)

where p(r,t) is the total acoustic pressure in the medium.
The scattering configuration considered here is sketched in Fig. 1. The medium is sub-

jected to a pulsatile plane wave propagating in the direction of the unit vector e,
piHC(r7 «, t) = f(t —r- a/Co), (3)

where f is the time-domain waveform and ¢ is the background sound speed. The scattered
wavefield p,(0, , t) is measured at a fixed radius R in the far field, where 6 corresponds to
the direction vector of a receiving transducer element. (Alternatively, if scattering measure-
ments are made in the near field, the farfield acoustic pressure can be computed using exact
transforms that represent propagation through a homogeneous medium.?5)

A general time-domain solution for the wave equation (2), valid for two-dimensional (2D)
or three-dimensional (3D) scattering, is then -

o0

ps(07 «, t) = / 00233(0, -, LL)) C_th d(.U, (4)

where p,(8, o, w) is a single frequency component of the scattered wavefield,
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1 oo .
Ps(0, o, w) = %/ ps(0, o, t) e™* dt, (5)
given exactly by
ps(0, a,w) = k2 f(w) /GO(RB — 1o, w) Y(ro) B(r, o, w) dVj. (6)

In Eq. (6), k is the wavenumber w/cy and p(ro, o, w) is the total acoustic pressure associated
with the unit-amplitude incident plane wave e?*®T. The integral in Eq. (6) is taken over
the entire support of v in R2 for 2D scattering or in R® for 3D scattering. The free-space
Green’s function, represented by Gy in Eq. (6), is®

?

Go(r,w) = 1 H((,l)(kr) for 2D scattering and
eikr
Go(r,w) = o for 3D scattering, (7)

where Hél) is the zeroth-order Hankel function of the first kind and r is the magnitude of
the vector r.

The farfield scattered pressure, when specified for all incident-wave directions o, mea-
surement directions @, and times ¢, comprises the data set to be used for reconstruction of
the unknown medium ~(r). The inverse scattering problem is to reconstruct y(r) using this
measured data. The starting point for the present time-domain inverse scattering method
is conventional single-frequency diffraction tomography, which can be performed using any '
frequency component of the measured farfield scattering.

Under the assumption of weak scattering, one can make the Born approximation, in
which the total pressure $(c, w) in Eq. (6) is replaced by the plane wave "™, For scattering

measurements made at a radius R in the far field, linearized inversion of Eq. (6) for any

frequency component can then be performed using filtered backpropagation,253%0 j ¢,
N —ikR .
1(r,w) = AL /] 26, 0)5,(6,0,w) =)+ dS, dS, (8)
f(w)
where
ik
p(w) = — ZSTIE’ ®(0,a) = |sin(f — a)| in 2D, and
N kR .
pw) = s ®(0,a) =10 — a| in 3D. (9)

Each surface integral in Eq. (8) is performed over the entire measurement circle for the 2D

case and over the entire measurement sphere for the 3D case.
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Equation (8) provides an exact solution to the linearized inverse scattering problem
for a single frequency component of the scattered wavefield p;(6, o, t). Instead of seeking a
solution for y(r) that exactly satisfies the linearized time-domain inverse scattering problem,
the method outlined here constructs a “compounded” «(r) by integrating single-frequency
reconstructions (r,w) over a range of frequencies w. A generalized formula for this approach

can be written

Jo© §(w) v(r,w) dw

r)= = 10
) =T ) d 1o

where §(w) is an appropriate frequency-dependent weighting function.

Using Eq. (8), and making the definition
N= 2/0 §(w) dw, (11)
Eq. (10) can be written in the form
) TR ik(8—a)r

Yu(r) N f ®(0, ) ps(0,,w) e dSa dSp dw. (12)

If the frequency weight §(w) is now specified to incorporate the incident-pulse spectrum

f (w) and to compensate for the frequency- and dimension-dependent coefficient ji(w),
§w) = f(w)/pw), (13)
Eq. (12) reduces to the form
) = = [[ 2(6,0) [ 5,(6,0,0)e HRH0 du dS, ds, (14)

Equation (14) can be rewritten using the definition of p,(8, o, w) from Eq. 5 to yield the

time-domain expression

() = % / (6, ) L [ps <0,a, R/co+ (—a—:ﬁ)-—f)} dS, dSs, (15)

Co

where L denotes the linear operator

Ol =2 [ P do (16)

and 1(w) is the Fourier transform of v(t) using the definition from Eq. (5).
Using the conjugate symmetry oflf)(w) [i.e., 1/3(9, a,w) = 113*(0, a, —w) for any real ¥(t)],
the real part of L[t(t)] is shown to be simply ¢(¢). Similarly, using the convolution theorem
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as well as the conjugate symmetry of 9(¢), the imaginary part of L[y (¢)] is seen to be an

inverse Hilbert transform?*! of (t),

L] = — [~ A ar = 1 ). (a7)

ot —T

This transform, also known as a quadrature filter, applies a phase shift of 7/2 to each
frequency component of the input signal.

Thus, the time-domain reconstruction formula can finally be written

(e = % [ (6,0) (pi(8,0,7) + i [pu(6,0,7)]) dS..dS, (18)
where
r=Rjey+ 20T "c:)) = (19)

The direction-dependent weight ®(8, &), which is the same as the “filter” employed in
single-frequency filtered backpropagation, is given for the 2D and 3D cases by Eq. (9).

Equation 18 is notable in several respects. First, it provides a linearized reconstruction
that employs scattering information from the entire signal bandwidth without any frequency
decomposition of the scattered wavefield. Second, the delay term 7 corresponds exactly
to the delay required to construct a focus at the point r by delaying and summing the
scattered wavefield p,(8, a, t) for all measurement directions @ and incident-wave directions
a. Thus, the time-domain reconstruction formula given by Eq. (18) can be regarded as a
quantitative generalization of confocal time-domain synthetic aperture imaging, in which
signals are synthetically delayed and summed for each transmit/receive pair to focus at the
image point of interest.35:42745

A reconstruction formula similar to, although less general than, Eq. 18 was independently
derived in Ref. 36 for the two-dimensional inverse scattering problem. In view of the present
derivation, the method of “probing by plane pulses” in Ref. 36 can be regarded to yield
a frequency-compounded reconstruction of Re [yy/(r)], while the present method yields the
complex function 7y (r). In Ref. 36, this method was proposed as a more convenient way
to implement narrow-band diffraction tomography. However, the numerical results given
below show that the reconstruction formula of Eq. 18, when directly implemented using
wideband signals, provides considerable improvement in image quality over narrow-band

reconstructions.
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Reconstructions using Eq. (18) can be performed using any pulse waveform. However,
the frequency compounding defined by Eq. (10) is most straightforwardly interpreted if the
frequency weight §(w) has a phase that is independent of frequency. This criterion can be

met, for instance, if the incident pulse waveform f(¢) is even in time,

F(t) = F(=1), (20)

so that f(w) is purely real. (Similarly, if the incident pulse waveform is odd in time, Flw) is
purely imaginary and Eq. (18) can still be employed.)
However, supposition of a frequency-independent phase for f (w) does not result in any

loss of generality. For any linear-phase signal, such that the Fourier transform has the form

fw) = Ifw) e, w>0, (21)
an additional delay term of magnitude ¢ can be applied to all scattered signals to obtain
the signals associated with the purely-real spectrum |f(w)|. In general, the scattered field
associated with a desired waveform f(t) can be determined for an arbitrary waveform wu(t)

from the deconvolution operation

“h»

(w)

w)

|

[ps(g, «a, t)]f(t) = F_l [ps(o’ «, t)]u(t) : (22)

(=)
—

For stable deconvolution using Eq. (22), the desired f(w) should not have significant fre-

quency components outside the bandwidth of 4(w).

B. Extensions to the reconstruction algorithm

For large tissue structures at high ultrasonic frequencies, weak scattering approximations
such as the Born approximation are of limited validity. Thus, for problems of interest to
medical ultrasound imaging, reconstructed image quality can be improved by aberration
correction methods that incorporate higher-order scattering and propagation effects. The
present time-domain reconstruction formula (18) provides a natural framework for quanti-
tative imaging with aberration correction. In general, if the background medium is known
or can be estimated, the received scattered signals can be processed to provide an estimate
of the scattered field that would be measured for the same scatterer within a homogeneous

background medium. This approach essentially removes higher-order scattering effects from
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the measured far field scattering, so that a Born inversion can be performed on the modified
data; similar processes occur implicitly in many nonlinear inverse scattering methods.*6
For example, a simple implementation of aberration correction can be derived if one
makes the assumption that background inhomogeneities result only in cumulative delays
(or advances) of the incident and scattered wavefronts. This crude model does not include
many propagation and scattering effects important to ultrasonic aberration, but has been
shown to provide a reasonable first approximation of local delays in wavefronts propagating
through large-scale tissue models.*”*® Given this approximation, the total delay for an angle
¢ and a point position r is given by
r(g,1) = [ cle) ™ de— - (23)
£ Co
where the integral is performed along the line that joins the spatial points r and Re,
Aberration-corrected reconstructions can then be performed using Eq. (18) with 7 replaced

by the corrected delay term

(o - 6)

T — R/cy + Ty ér(a,r) + 67(6, ). (24)

Co

Improved approximations could be obtained by application of the delay function 67(¢,r)
after numerical backpropagation of the farfield scattered wavefronts through a homogeneous
medium?®%° or by compensation for both delay and amplitude variations.>*52 More general,
although much more computationally expensive, aberration correction could also be per-
formed by synthetic focusing using full-wave numerical computation of acoustic fields within
an estimated realization of the unknown medium. This method has been implemented,
within the context of a frequency-domain diffraction tomography method, in Ref. 30.

The present imaging method has been derived using simplifying assumptions including
zero absorption and constant density for the scattering medium. However, these assumptions
do not substantially restrict the validity of the method. For example, the effect of absorp-
tion can be reduced using time-gain compensation, with or without frequency-dependent
corrections,?® of received scattered signals for each transmit/receive pair. Such time-gain
compensation could be performed either using an estimated bulk attenuation for the medium
(as with current clinical ultrasound scanners), or by implementation of an adaptive attenu-
ation model in a manner similar to the time-shift compensation scheme discussed above.

Inclusion of density variations as well as sound speed variations adds additional complica-

tion to the time-domain diffraction tomography algorithm derived here. For single-frequency
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diffraction tomography in the presence of sound speed and density variations, the quantity
vg(r,w) reconstructed by Eq. 8 can be shown®* to provide an estimate of a physical quantity
that depends both on sound speed variations and density variations. In the notation used

here, this quantity can be written

1

Y (r) = (x) = 7)) + 55 V2 (x), (25)

where the density variation is defined 7, = 1—po/p(r). Thus, for time-domain reconstructions
of media with density variations, the reconstruction formula of Eq. 18 will provide the

estimate

() & 4 (x) — 7(0)7,(0) +5;—3—v2v,,<r>, (26)

where kg is the wavenumber corresponding to the center frequency of the pulse employed. For
media such as human tissue, where density variations are fairly small and abrupt density
transitions are rare, the last two terms of Eq. (26) are small compared to (r), so that
the reconstruction algorithm derived above can still be regarded to provide an image of
the sound-speed variation function «(r). However, if desired, a reconstruction employing
pulses with two distinct center frequencies could allow separation of sound speed and density

variations by techniques similar to those described in Refs. 25 or 54.
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II. COMPUTATIONAL METHODS

The time-domain inverse scattering method described above has been tested with 2D and
3D synthetic data prepared using three numerical methods: a Born approximation method
for point scatterers and 3D slabs, an exact series solution for cylindrical inhomogeneities,
and a k-space method for arbitrary 2D inhomogeneous media.

The time-domain waveform employed for all the computations reported here was
F(t) = cos(wot) e /2", (27)

where wy = 2w fy for a center frequency of fy, and o is the temporal Gaussian parameter.

This waveform has the real, even Fourier transform

f(w) =4 / g_;_ (e—az(w—wo)2/2 + 6_02(w+w0)2/2) (28)

Values used for the compurations reported here were fy = 2.5 MHz and o = 0.25 us, so that
the —6 dB bandwidth of the signal was 1.5 MHz. These parameters correspond closely to
those of an existing 2048-element ring transducer.5

For the case of point scatterers, the contrast function v was assumed to take the form

y(r) = ;uj o(r —r3). (29)

Using the farfield form of the 2D Green’s function and neglecting multiple scattering, Eq. (6)

for the scattered far field can be rewritten as

A ’ ¢ ik(ce—0)-r;
B.(8,00) =~k ) Yo e 30)
J

for each frequency component of interest. Time-domain waveforms were synthesized by using
Eq. (30) for each frequency with f (w) > 1073 and inverting the frequency-domain scattered
wavefield by a fast Fourier transform (FFT) implementation of Eq. (4). The temporal
sampling rate employed was 10 MHz. An analogous formula, with a different multiplicative
constant, was also employed for the 3D case.

The Born approximation was also used to compute three-dimensional scattering for slab-

shaped objects defined by the equation

v(x) =y H(az — |2])H(ay — [y[) H(a. — |2])- (31)




’,—f, ST

T. D. Mast, submitted to J. Acoust. Soc. Am. 13

For this object, the linearized forward problem can be solved analytically. Under the Born

approximation, the frequency-domain scattered far field has the form

ps(0, a,w) =2 F(w) yo azaya; e¥F/ (T R)
sin[kL, (a—8) - €] sin[kL, (a—8) - e,] sin[kL, (a—6) - &;]
kL, (a—0) e, kL, (a—0) e, kL, (a—0)-e, ’
where e, €, and e, represent unit vectors in the z, y, and z directions. The time domain

(32)

scattered pressure p,(@, a,t) is obtained, as for the point scatterer case described above,
by inverse transformation of the frequency-domain wavefield for all frequencies within the
bandwidth of interest.

For 2D cylindrical inhomogeneities, an analogous procedure was followed, except that
the frequency-domain scattered wavefield p,(6, a,w) was computed using an exact series
solution®” for each frequency component of interest. In implementation of the series solution,
summations were truncated when the magnitude of a single coefficient dropped below 10712
times the sum of all coeflicients.

Solutions were also obtained for arbitrary 2D inhomogenous media using a time-domain
k-space method.*® Grid sizes of 256 x 256 points, a spatial step of 0.0833 mm, and a time
step of 0.02734 us were employed. Scattered acoustic pressure signals on a circle of virtual
receivers were recorded at a sampling rate of 9.144 MHz. The receiver circle, which had
a radius of 3.0 mm in these computations, completely contained the inhomogeneities used.
Farfield waveforms were computed by Fourier transforming the time-domain waveforms on
the nearfield measurement circle, transforming these to farfield waveforms for each frequency
using a numerically exact transformation method,? and performing inverse Fourier transfor-
mation to yield time-domain farfield waveforms. All forward and inverse temporal Fourier
transforms, as well as angular transforms occurring in the nearfield-farfield transformation,?®
were performed by FFT.

The time-domain imaging method was directly implemented using Eq. (18), evaluated us-
ing straightforward numerical integration over all transmit and receive directions employed.

The reconstruction formula employed can be explicitly written as

var(r) = le—D | 2”/02” |sin(a — 0)] (ps(8, o ) + iH [p,(8, o 7)]) devd,

(cosa — cosf) -z + (sino — sinf) - y
Co

T = R/Co + (33)

for the 2D case, where o and 6 are the angles corresponding to the direction vectors a and

0, and as
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e (r) = Niw L[] 1a= 61 (p.(0,0,7) + i1 5,(6,0,7)

X Sil’l(q)a) sin(CIDg) d(I)a d@a dq)g d@g y
T = R/Co -+ ——(a _ce) : r,
0

a — 0 = (cos Oy sin @ — cos Og sin By) - €, + (sin O sin P, — sin Og sin Pg) - €,

+ (cos @y — cos Py) - €, (34)

for the 3D case, where O, and ®, are direction angles for the incident-wave direction o
and ©p and Py are direction angles for the measurement direction 8. For each case, the
normalization factor N was determined from Eq. 11 with §(w) = f(w)/i(w) and p(w)
given by Eq. 9. Before evaluation of the argument 7 for each signal, the time-domain
waveforms were resampled at a sampling rate of 16 times the original rate. This resampling
was performed using FFT-based Fourier interpolation. The inverse Hilbert transform was
performed for each signal using an FFT implementation of Eq. (16). Values of the pressure
signals at the time 7 were then determined using linear interpolation between samples of the
resampled waveforms. The integrals of Egs. (33) and (34) were implemented using discrete
summation over all transmission and measurement directions employed.

Computations were also performed using the time-domain diffraction tomography algo-
rithm for limited-aperture data. For these reconstructions, the integrals of Eq. (33) were
evaluated only for angles corresponding to transmitters and receivers within a specified

aperture of angular width ¢,;, t.e.,

o] < ¢ap/2,
|60 — 7| < $ap/2, (35)

Use of a small value for ¢,, corresponds to use of a small aperture in pulse-echo mode.
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III. NUMERICAL RESULTS

Two-dimensional and three-dimensional point-spread functions (PSF) for the present
time-domain diffraction tomography method are illustrated in Fig. 2. The time-domain re-
constructions shown here, like the other time-domain reconstructions shown in this paper,
were obtained using a incident pulse of center frequency 2.5 MHz and a Gaussian envelope
corresponding to a —6 dB bandwidth of 1.5 MHz. Point-spread functions were determined
by reconstructing a point scatterer located at the origin. For the 2D case, in which the point
scatterer can be regarded as a thin wire, synthetic scattering data was obtained using the
Born approximation method outlined above for 16 incident-wave directions and 64 measure-
ment directions. The 3D time-domain reconstruction was obtained using Born data for 72
incident-wave directions and 288 measurement directions, each evenly spaced on a rectan-
gular grid defined by the angles © and ®. For comparison, analogous point-spread functions
are also shown for standard frequency-domain diffraction tomography reconstructions with
single-frequency (2.5 MHz) data.

For the 2D case illustrated in Fig. 2, the time-domain reconstruction has a slightly
narrower peak, indicating that point resolution has been slightly improved by the increased
bandwidth employed in the time domain method. More significantly, sidelobes of the time-
domain PSF are dramatically smaller than those for the frequency-domain PSF, so that
contrast resolution for time-domain diffraction tomography is seen to be much higher than
for single-frequency diffraction tomography. For the 3D case, the time-domain reconstruction
shows a much more dramatic improvement over the frequency-domain reconstruction. In this
case, both the point resolution and the contrast resolution are significantly higher for time-
domain reconstruction than for single-frequency reconstruction. Furthermore, a comparison
of the PSF’s for 2D and 3D time-domain reconstruction indicates that much higher image
quality is achievable for 3D time-domain imaging than for the 2D case. This increase in
image quality suggests that the time-domain diffraction tomography method proposed here
may benefit from the overdetermined nature of the general wideband 3D inverse scattering
problem 578

The effect of transmit and receive aperture characteristics on image quality is illustrated
in Fig. 3, which shows the point-spread function for a number of aperture configurations.
All of these reconstructions employed 64 measurement directions, which were found to ad-

equately sample the scattered far field for a single transmit direction. Figure 3(a) shows
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the point-spread function for reconstructions obtained using 1, 4, 8, and 16 incident-wave
directions. The point scatterer is clearly imaged even for the reconstruction using one
incident-wave direction. Optimal image quality (indistinguishable from reconstructions with
64 incident-wave directions) is obtained for 16 incident-wave directions, so that scattering
data obtained using one incident-wave direction for each group of four measurement direc-
tions appears to be sufficient for the present reconstruction method. The effect of limited
view range on the point spread function is illustrated in Fig. 3. Limitation of the transmit
and recieve apertures to angles near the backscatter direction (aperture size 7/2) results
in an image that resembles a conventional B-scan. Use of an aperture corresponding to
pulse-echo mode in the large-aperture limit (aperture size m) yields higher resolution in all
directions. Using three fourths of a circular aperture (size 37/2) yields image quality close
to that for the full aperture (27) case.

Reconstructions performed using exact solutions for scattering from cylindrical inho-
mogeneities provide a straightforward means to assess the accuracy of the time-domain
scattering method for a range of object sizes and contrasts. Cross sections of time-domain
and single-frequency reconstructions, plotted in Fig. 4, show the relative accuracy of each
reconstruction method for a cylinder of 1 mm radius and purely real contrast ranging from
v = 0.02 to v = 0.08. For the synthetic scattering data in each case, 96 measurement di-
rections and 24 incident-wave directions were employed. The time-domain reconstructions
show improvement over the single-frequency reconstructions both in improved contrast reso-
lution (smaller sidelobes outside the support of the cylinder) and in decreased ripple (Gibbs
phenomenon) artifacts within the support of the cylinder. However, for increasing con-
trast values, both methods show similar increases in phase error, as indicated by increased
imaginary parts of the reconstructed contrast.

Further testing of accuracy for the time-domain reconstruction method is shown in Fig. 5.
Real parts of time-domain reconstructions are shown for cylinder radii between 1 mm and
4 mm with contrasts between v = 0.02 and v = 0.08. The number of measurement directions
employed for the synthetic scattering data was 96 for the 1 mm radius cylinders, 192 for the
2 mm cylinders, 288 for the 3 mm cylinders, and 384 for the 4 mm cylinders. In each case,
four incident-wave directions per measurement direction were used. Using the wavenumber
kg = 10.472 rad/mm corresponding to the center frequency of 2.5 MHz and a sound speed of
1.5 mm/pus, the reconstructions shown in Fig. 5 indicate that the interior of the cylinder is

imaged satisfactorily for the approximate range ka x v < 2.5. This result is consistent with




T. D. Mast, submitted to J. Acoust. Soc. Am. 17

a previous study of single-frequency diffraction tomography, which showed that adequate
Born reconstructions of cylinders were obtained for the parameter range kaxy < 2.2.5

Reconstructions for several scattering objects without special symmetry are shown in
Fig. 6. All of these reconstructions were performed using synthetic data produced by the k-
space method described in Ref. 56. Synthetic scattering data were computed for 64 incident-
wave directions and 256 measurement directions in each case. The first panel shows a
reconstruction of a cylinder of radius 2.5 mm and contrast v = —0.0295 with an internal
cylinder of radius 0.2 mm and contrast v = 0.0632. The second panel shows a reconstruction
of a 2.5 mm-radius cylinder with random internal structure. The third reconstruction shown
employed a portion of a chest wall tissue map from Ref. 60. In this case, the synthetic
data was obtained using a tissue model®® that incorporates both sound speed and density
variations, so that the reconstructed quantity is given by Eq. (26).

The real part of each reconstruction shows good image quality, with high resolution and
very little evidence of artifacts. Particularly notable is the accurately detailed imaging of
internal structure for the random cylinder and the chest wall cross section. As expected,
the density variations present in the chest wall cross section have not greatly affected the
image appearance; there is, however, a slight edge enhancement, associated with the Lapla-
cian term in Eq. (26), at boundaries between tissue regions. Also notable is the nearly-
complete absence of any artifacts outside the scatterer in each case; this result indicates
that high contrast resolution has been achieved. However, in each case, the imaginary part
of the reconstruction is nonzero, indicating that the Born approximation is not fully appli-
cable. Aberration correction methods [of which a simple example is given by Eq. (24)] could
substantially reduce this phase error, as for multiple-frequency diffraction tomography in
Ref. 30.

Three-dimensional reconstructions of a homogeneous slab are shown in Fig. 7. The
scatterer is characterized by Eq. (31) with 7o = 0.01, a; = 0.5 mm, a, = 1.0 mm, and
a, = 1.5 mm. Synthetic data was computed using Eq. 34 for 288 transmit directions and
1152 measurement directions, each evenly spaced in the angles ® and ©. Signal parameters
were as for the examples above, except that the initial sampling rate for the time-domain
signals was 9.0 MHz. Isosurface renderings of the real part of s are shown for the sur-
faces vy = 0.0025. Since the scattering data were obtained using a Born approximation
for the 3D case, the imaginary part of each reconstruction is identically zero for both re-

constructions. Consistent with the point-spread functions shown in Fig. 2, the time-domain
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reconstruction is much more accurate than the single-frequency reconstruction. While the
single-frequency reconstruction shows an erroneously rippled surface, the time-domain re-
construction is smooth. The time-domain reconstruction is nearly identical to the original
object except for some rounding of edges due to the limited high-frequency content of the
signal employed.

Since three-dimensional inverse scattering is a computationally demanding problem, com-
parison of computational efficiency for single-frequency and time-domain methods is of inter-
est. For both reconstructions shown in Fig. 7, identical discretizations of the reconstructed
medium were employed. Both computations included solution of the applicable linearized
forward problem as well as the inverse problem. Nonetheless, the time-domain method
was more efficient than the single-frequency method; the total CPU time required on a
200 MHz AMD K6 processor was 133.3 CPU min for the time-domain method and 287.4
CPU minutes for the single-frequency method. This gain in efficiency was possible because
the greatest computational expense occurred in the “backpropagation” of the signals for
each reconstruction point. For the single-frequency method, this step required evaluation of
complex exponentials for each transmit direction, measurement direction, and spatial point.
For the time-domain method, however, the computationally intensive steps (including the
forward problem solution and Fourier interpolation of the scattered signals) needed only to
be performed once for each transmit/receive pair. For the backpropagation step, performed
at each point in the 3D spatial grid, the time-domain reconstruction method required only

linear interpolation of the oversampled farfield pressure waveforms.
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IV. CONCLUSIONS

A new method for time-domain ultrasound diffraction tomography has been presented.
The method provides quantitative images of sound speed variations in unknown media;
when two pulse center frequencies are employed, the method is also capable of imaging
density variations. Reconstructions performed using this method are equivalent to multiple-
frequency reconstructions using filtered backpropagation, but can be obtained with much
greater efficiency.

The time-domain reconstruction algorithm has been derived as a simple filtered delay-
and-sum operation applied to farfield scattered signals. This algorithm is closely related to
time-domain confocal synthetic aperture imaging, so that it can be considered a generaliza-
tion of imaging algorithms employed‘in current clinical instruments. The simplicity of the
imaging algorithm allows straightforward addition of features such as time-gain compensa-
tion and aberration correction.

Numerical results obtained using synthetic data for 2D and 3D scattering objects show
that the time-domain method can yield significantly higher image quality (and, in some
cases, also greater efficiency) than single-frequency diffraction tomography. Quantitative re-
constructions, obtained using signal parameters comparable to those for present-day clinical
instruments, show accurate imaging of objects with simple deterministic structure, random
internal structure, and structure based on a cross-sectional tissue model. The method is
hoped to be useful for diagnostic imaging problems such as the detection and characteriza-

tion of lesions in ultrasonic mammography.
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FIGURES

FIG. 1. Scattering configuration. An incident pressure pulse of the form f(t — a - r/c) is
scattered by an inhomogeneous medium and the time-domain scattered field p,(8, o, t) is measured

at a radius R in the far field.
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FIG. 2. Point-spread functions for time-domain and single-frequency diffraction tomography
methods. In each panel, the vertical scale corresponds to the relative amplitude of the recon-
structed contrast y(r), while the horizontal scale corresponds to number of wavelengths at the

center frequency. (a) Two-dimensional case. (b) Three-dimensional case.
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FIG. 3. Effect of aperture characteristics on image quality. The point-spread function (PSF),
determined as the real part of the reconstructed contrast yas(r), is shown for the same waveform
parameters as in Fig. 2. Each panel shows an area of 0.6 mm x 0.6 mm, corresponding to one square
wavelength at the center frequency. In each case, 64 measurement directions were employed.
(a) PSF for 1, 4, 8, and 16 incident-wave directions. (b) PSF for aperture sizes of /2, 7, 37/2,

and 27 radians.
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FIG. 4. Cross sections of reconstructed contrast functions y(r) for a cylinder of radius 1 mm,
using time-domain (TD) and single-frequency (SF) diffraction tomography. Waveform parameters

are as in Fig. 1. (a) v =0.02. (b) v =0.04. (c) v =0.06. (d) v = 0.08.
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FIG. 5. Time-domain reconstructions for cylinders of varying size and contrast. Each panel
shows the real part of the reconstructed contrast s (r) for a pulse of center frequency 2.5 MHz
and —6 dB bandwidth 1.5 MHz. In each case, the ratio of measurement directions to incident-wave
directions is four. All images are shown on a linear, bipolar gray scale where white represents the

maximum amplitude of |yas(r)| and black represents —1 times the maximum amplitude.
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FIG. 6. Time-domain reconstructions from full-wave synthetic data for three arbitrary scatter-
ing objects. Each row shows the actual (purely real) contrast function 7 together with the real
and imaginary parts of the reconstructed contrast function s, using the same linear bipolar gray
scale for each panel. Each panel shows a reconstruction area of 5 mm x 5 mm. (a) Cylinder, radius
2.5 mm, with an internal cylinder of radius 0.2 mm. (b) Cylinder, radius 2.5 mm, with random
internal structure. (c) Tissue structure, with variable sound speed and density, from chest wall

cross section HbL in Ref. 56.
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FIG. 7. Three-dimensional reconstructions of a uniform slab with contrast v = 0.01. Each

reconstruction shows an isosurface rendering of the surface vy = 0.0025. Left: single-frequency

reconstruction. Right: time-domain reconstruction.
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Abstract

A finite-difference time-domain model for ultrasonic pulse propagation
through soft tissue has been extended to incorporate absorption effects as
well as longitudinal-wave propagation in cartilage and bone. This extended
model has been used to simulate ultrasonic propagation through anatomically
detailed representations of chest wall structure. The inhomogeneous chest wall
tissue is represented by two-dimensional maps determined by staining chest
wall cross sections to distinguish between tissue types, digitally scanning the
stained cross sections, and mapping each pixel of the scanned images to fat,
muscle, connective tissue, cartilage, or bone. Each pixel of the tissue map
is then assigned a sound speed, density, and absorption value determined
from published measurements and assumed to be representative of the local
tissue type. Computational results for energy level fluctuations and arrival
time fluctuations show qualitative agreement with measurements performed
on the same specimens, but show significantly less waveform distortion than
measurements. Visualization of simulated tissue-ultrasound interactions in
the chest wall shows possible mechanisms for image aberration in echocardio-
graphy, including effects associated with reflection and diffraction caused by
rib structures. Comparison of distortion effects for varying pulse center fre-
quencies shows that, for soft tissue paths through the chest wall, energy level
and waveform distortion increase markedly with rising ultrasonic frequency

and that arrival-time fluctuations increase to a lesser degree.
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INTRODUCTION

Echocardiography is widely employed for diagnosis of cardiac disease including valvular
defects, pericardial effusion, and wall motion abnormalities." ® Commonly, echocardiography
is performed noninvasively through the chest (transthoracic) using an external probe placed
on the chest wall. The chest wall, however, can considerably degrade image quality because
acoustic paths between the skin and heart can contain ribs and cartilage as well as inhomo-
geneous muscle and fatty tissue. The result is that as many as 10~-30% of patients cannot
be successfully imaged with present transthoracic techniques.* This limitation of transtho-
racic echocardiography has led to the development of transesophageal echocardiography, in
which the heart is imaged by a transducer inserted within the esophagus.'* Although trans-
esophageal echocardiography provides superior image quality, resulting in high diagnostic
sensitivity and specificity, the invasiveness of the procedure is accompanied by increased
risk.378 For this reason, improvement in the noninvasive transthoracic approach is desirable,
for example, by the development of methods to compensate for image degradation caused
by the chest wall.

An understanding of ultrasonic aberration produced by the chest wall is important to
the development of appropriate compensation methods for transthoracic ultrasonic imaging.
Direct measurements of ultrasonic distortion produced by chest wall specimens”® have been
helpful. The study reported in Ref. 7 shows that propagation through the chest wall causes
substantial beam distortion. However, that study did not distinguish the effect of soft tissue
from effects caused by rib structures. In Ref. 8, a detailed study of distortion caused by
soft tissue paths indicates that soft tissue distortion in the chest wall is substantially less
than corresponding distortion in the human abdominal wall. However, distortion caused
by ribs was only treated qualitatively in the latter study because the physical mechanisms
of rib-induced distortion could not be adequately described by the method reported there.
Although a model of ultrasound propagation in the chest wall has previously been described,®

that model is based on coarse depictions of chest wall morphology including homogeneous
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tissue layers and evenly-spaced, uniformly-shaped ribs. These previous experiments and
simulations, therefore, have left gaps in knowledge about the physical causes of ultrasonic
wavefront distortion caused by the chest wall.

Recent work on simulation of ultrasonic pulse propagation!?'? has provided insight
about the wavefront distortion caused by the human abdominal wall. Although these studies
have provided specific information about the relationships between soft tissue morphology
and ultrasonic wavefront distortion, the work is not fully applicable to distortion caused by
the human chest wall. The morphology of chest wall soft tissue has been hypothesized to
be different from the abdominal wall in ways that affect ultrasonic wavefront distortion.®
Furthermore, imaging through the chest wall is complicated by ribs that limit the usable
acoustic window size and cause scattering and reflection.

The study reported here applies quantitative simulation methods, similar to those pre-
sented in Refs. 10 and 12, to anatomically detailed chest wall models that include the ribs. To
accurately model the strong losses associated with propagation through bone and cartilage,
the finite-difference method described in Ref. 10 has been extended to include absorption.
Quantitative descriptions of the distortion caused by soft tissues are obtained by statistical
analysis of simulated distortion. Visualizations of wavefronts propagating through maps of
chest cross sections provide evidence about physical relationships between wavefront distor-
tion and the morphology of ribs and soft tissue structures in the chest wall. Further insight
about wavefront distortion mechanisms is provided by comparison of distortion results for

incident pulses of different center frequencies.




I. THEORY

Ultrasonic pulse propagation through the human chest wall is modeled here using the
equations of motion for a fluid of variable sound speed, density, and absorption. The tissue
is assumed motionless except for small acoustic perturbations. Absorption is included using
an adaptation of the Maxwell solid model, in which all absorption effects are represented
by a single relaxation time. This assumption results in frequency-independent absorption
characteristics.'® For such a fluid, the linearized equations of mass conservation, momentum
conservation, and state can be combined to obtain the first-order, two-dimensional, coupled

propagation equations

ap(agty, t) + p(z,y) c(z,y)> V - v(z,y,t) = —a(z,9) p(z, y, 1), (1)
p(z,y) W + Vp(z,y,t) = 0. )

Here, p(z,y,t) is the acoustic perturbation in fluid pressure, v(z,y,t) is the vector acoustic
velocity, p(z,y) is the ambient density, c(z,y) is the ambient sound speed, and a(z, ) is an
absorption coefficient that is equivalent to the inverse of a spatially-dependent relaxation
time 7(z,y).

The absorption coeflicient ¢, defined as a real quantity, is related to the energy lost
per unit length as follows. The propagation equations (1) and (2) lead, for plane-wave

ikz=wt) to the dispersion relation

k=2y142, (3)
C w

where k is the complex wavenumber, w is the (real) radial frequency 27 f, and c is the (real)

propagation of the form p =e

sound speed. The imaginary part of the wavenumber £ is the absorption in nepers per unit
length. Thus, the absorption parameter o can be obtained by numerical solution of the

equation

mlk] = loss (dB/length) _ Im[g E]

20 log;,(e) 1+ (4)

C w




Solution of Eq. (4) results in wavenumbers having a real part that differs from w/c. Since
this discrepancy is less than 1% over the range of tissue properties employed in the present
study, use of absorption coefficients computed from Eqg. (4) does not significantly affect
propagation characteristics except by adding the specified absorption.

Equations (1) and (2) were solved numerically using the finite-difference time-domain
(FDTD) method described in Refs. 10 and 14. This method is a two-step MacCormack
algorithm that is fourth-order accurate in space and second-order accurate in time. Further
details on this class of finite difference algorithms can be found in Refs. 15-17.

The initial condition was chosen to model the experimental configuration in Ref. 8, in
which a spatially broad, nearly planar wavefront was emitted from a wideband, pulsed,
unfocused source far from the tissue layer. The initial wavefront was represented in the

present simulation as a plane wave pulse propagating in the +y direction:

p(z,y,0) = —sin[ko(y — vo)] e_(y—yo)z/(&rz),

u(z,y,0) =0, and

_ p(z,9,0)
v(z,y,0) = —-——pc , (5)

where the wavenumber kg is equal to 27 fo/c for a center frequency of f; and o is the Gaussian
parameter of the pulse temporal envelope. The spatial Gaussian parameter o was chosen
to simulate the bandwidth of the pulse used in the experiments, as discussed below in the
Method.

The computational configuration is analogous to that described in Ref. 10. The domain
of computation is two-dimensional, with the y direction taken to be parallel to the direction
of propagation and the z direction parallel to the initial wavefront. As in Ref. 10, periodic
boundary conditions were applied on the domain edges that were parallel to the direction of
propagation, while radiation boundary conditions were applied on the edges perpendicular

to the direction of propagation.




II. METHOD

This study employed six chest wall specimens from four different donors between 79 and
85 years of age. One specimen (4L) was from a white female, while the others were from
white males. All specimens were obtained from autopsy, stored unfixed at —20°C, and
thawed when needed for study. Wavefront distortion measurements made on some of these
specimens as well as other specimens are described in Ref. 8. The nomenclature employed
here for the cross sections corresponds to that of Ref. 8 for the whole specimens from which
the cross sections were taken; each cross section is identified by a donor number together
with “L” or “R” to indicate whether the specimen was taken from the left or right side of the
breastplate. Additional numbers were used in Ref. 8 to indicate the intercostal space used
in each measurement; here, letters are used to indicate independent acoustic paths. Four of
the cross sections employed here (4L, 5L, 7L, and 7R) were taken from specimens employed
in Ref. 8. Cross sections 8L and 8R were taken from specimens through which ultrasonic
transmission was measured in the study described in Ref. 8, but distortion statistics for
these specimens were not reported in Ref. 8 because of limited acoustic windows.

After the wavefront distortion measurements, the specimens were cut into cross sections
using the technique described in Ref. 10. The cross sections were fixed and stained with a
modified Gomori’s trichrome stain according to the procedure detailed in Ref. 18, so that
tissue types could be distinguished. This stain colored muscle tissue red and connective tissue
blue while leaving the fat its natural color. Calcified tissue, including bone and cartilage
in the current specimens, was not differentially stained by this technique, but the natural
contrast between bone, cartilage, and marrow was sufficient to allow tissue mapping. Full-
color 300 d.p.i. images of the cross sections were created by placing each stained tissue cross
section directly onto the surface of a flatbed digital scanner. Image editing packages!® were
used to manually segment the cross sectional images, i.e., to map the images into regions
that corresponded to one of six media. The media were water (representing water external

to specimens or blood inside blood vessels), fat (including subcutaneous fat, fat interlaced




within muscle layers, and marrow), muscle, connective tissue (including skin, septa, and
fasciae), cartilage, and bone (including cortical bone and trabeculae within cancellous bone).

The six segmented tissue maps are shown in Fig. 1. All of the cross sections contain a
layer of septated subcutaneous fat below the skin. Most of the cross sections also include a
layer composed primarily of the major pectoral muscles and their connective fasciae above
the ribs. Between the ribs are regions of muscle (internal intercostal and external intercostal
groups) interlaced with fat. In some cases, additional thin layers of fat between muscle layers
are apparent. Cross sections 4L, and 7R are cut along the intercostal spaces parallel to the
ribs, so that in each a wide cross section of soft tissue appears. Cross sections 5L, 7L, and
8L are cut perpendicular to the ribs, so that each contains soft-tissue acoustic paths with
width equal to the width of the corresponding intercostal spaces. Cross section 8R is cut
perpendicular to the sternum at a location of large curvature in the ribs, so that the ribs
are diagonally sectioned. Several blood vessels appear in cross sections 4L, 7L, 7R, and 7R;
the largest of these is the internal mammary artery.

The basic structure of the cross sections is consistent with standard descriptions of chest
wall anatomy.?%?! Ribs appear in each cross section; each rib is composed of a “costal
cartilage” near the sternum (shown in most of the cross sections considered here) attached
to a “true rib” (composed primarily of cancellous bone) at the edge farther from the sternum.
In the cross sections considered here, the costal cartilages are primarily composed of calcified
cartilage, surrounded by a thin layer of cortical bone (solid, dense bone with microscopic
porous structure), which in turn is surrounded by the periosteum, a thin membrane of
connective tissue. Cross sections 7L and 7R also appear to contain a small amount of
cortical bone in the central portion of the ribs. This phenomenon may be associated with
advanced calcification known to occur in aging humans.?? Cancellous bone, composed of
thin trabeculae that forms macroscopic cells filled with marrow, is seen in all the ribs of
cross section 5L, which was taken at a distance farther from the sternum so that the true
ribs, rather than the costal cartilages, were included in this cross section. Some cancellous

bone is also apparent within portions of the ribs of cross sections 4L and 8R. In each case,
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the cancellous bone is surrounded by a thin layer of cortical bone and by the periosteum. A
portion of the sternum, composed of cancellous bone surrounded by cortical bone, is visible
at the left side of cross section 4L.

The density and sound speed arrays needed for the finite-difference computation were
created by mapping regions of the segmented tissue images to reference density and sound
speed values for the five tissue types and water. The water sound speed and density em-
ployed are those of pure water at body temperature (37.0°C).?*2* Sound speeds for muscle
and fat were obtained by averaging values for human tissues given in Refs. 25 and 26. A
representative sound speed for connective tissue was determined using an empirical formula
relating collagen content to ultrasonic sound speed?’ together with a measured value for the
collagen content of human skin.?® The sound speed employed for bone was obtained from an
average of values reported in Ref. 29 for longitudinal-wave propagation in human cortical
bone. The sound speed used here for cartilage is that given in Ref. 30 as quoted in Ref. 25.
Density values for soft tissues were determined from Ref. 31 by averaging values reported
for adipose tissue, skeletal muscle, and skin, respectively. Density values employed for bone
and cartilage are average values from Ref. 29.

Attenuation values were determined from measurements summarized in Ref. 25 for hu-
man fat at 37°C, human bicep muscle at 37° C, human skin at 40° C, human and bovine
cartilage at 23° C, and human skull (temperature not reported). Attenuation values reported
at other ultrasonic frequencies were interpolated (or, for the skull data, extrapolated) to ob-
tain values for 2.3 MHz (corresponding to the pulse center frequency employed here and in
Ref. 8) assuming a linear dependence of attenuation on frequency. The attenuation for water
was estimated by extrapolating frequency- and temperature-dependent attenuation values
summarized in Ref. 32 to 2.3 MHz and 37.0° C. The values of tissue parameters employed
in the present study are given in Table L.

The finite-difference program was employed to compute propagation of a plane wave pulse
through each scanned cross section from the skin to the peritoneal membrane, mimicking

the propagation path employed in the distortion measurements of Ref. 8. The spatial step
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size of the finite-difference grid was chosen to be 0.0442 mm, or 1/15 wavelength in water
at the center frequency of 2.3 MHz. The temporal step size was chosen to be 0.00725 us,
for an optimal Courant-Friedrichs-Levy number cAt/Axz of 0.25.17 The Gaussian parameter
o of the source pulse was chosen to be 0.4766 mm in accordance with the experimentally
measured pulse bandwidth (for pulses transmitted through a water path) of 1.2 MHz. Visual
comparison confirmed that the simulated pulse closely matched the measured pulses in shape
and length.

Each simulation was performed on a workstation with 128 MB of random-access memory.
Finite-difference grids on the order of 1500x1000 points were employed. At each time step,
the wave field was updated on a grid subset chosen to include the entire support of the
acoustic wave but to exclude quiescent regions. The entire pressure field was saved as a
raster image at intervals of 0.725 us for later visualization. The computation time for each
simulation was on the order of five hours.®

Signals were recorded for 8.62 us at a sampling frequency of 138 MHz by simulated
apertures with dimensions close to those in the experimental study of Ref. 8. Positions
of all simulated apertures employed are sketched in Fig. 1. The simulation of receiving
elements was performed by integrating the locally-computed pressure over the element pitch
of 0.21 mm. For cross sections cut parallel to the ribs, the simulated apertures contained
68 elements for an aperture width of 14.28 mm. For cross sections cut perpendicular to
the ribs, 55 simulated elements were used to form 11.55 mm apertures. Element directivity
effects were implicitly included by the integration of omnidirectional sensitivity functions
over the width of each element.

A one-dimensional version of the reference waveform method!%3 was used to calculate
the arrival time of the pulse at each receiving position in the simulation data. The arrival
time fluctuations across the receiving aperture caused by each cross section were calculated
by subtracting a linear fit from these calculated arrival times. Energy level fluctuations
in the data were calculated by summing the squared amplitudes of each waveform over a

2.4 ps window that isolated the main pulse, converting to decibel units, and subtracting
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the best linear fit from the resulting values. As for polynomial fits previously employed in
wavefront distortion measurements,® the purpose of the linear fit removal in each case was to
compensate for gross changes in tissue thickness across the array. Variations in pulse shape
across the aperture were evaluated using the waveform similarity factor;* this quantity,
which can be considered a generalized cross-correlation coefficient, has a maximum of unity
when all received waveforms are identically shaped.

To test the frequency dependence of chest wall wavefront distortion, propagation through
eight portions of specimens, each containing only soft tissue, was also computed for wave-
fronts having center frequencies of 1.6 and 3.0 MHz. In each case, the initial wavefront was
chosen to have the same temporal envelope as above. The absorption coefficient at these
frequencies for each tissue type was extrapolated from the value employed at 2.3 MHz using
the assumption that absorption depended linearly on the center frequency. The spatial and
temporal sampling rates were also varied in inverse proportion to the pulse center frequency.

All runs were otherwise identical in configuration and processing to those described above.

11




III. RESULTS

Wavefront distortion results for 13 soft tissue paths (i.e., paths in which wavefront dis-
tortion was not significantly influenced by the ribs) are shown in Table II. These results
indicate that soft tissue paths cause a wide range of wavefront distortion effects depending
on the specific morphology of each path. For instance, path 7R-c causes arrival time and
energy level fluctuations that are more than twice the magnitude of those caused by the
adjacent path 7R-d. This difference is thought to arise from morphological features, includ-
ing muscle tissue with interlaced fat and a large amount of connective tissue, of the tissue
within path 7R-c. Also notable is that the specimen thickness does not closely correspond
to variations in distortion. The largest rms arrival time fluctuation and lowest waveform
similarity factor, for example, are caused by path 4L-c, which has an average thickness less
than the mean for all the tissue paths.

Wavefront distortion statistics for the 13 soft tissue paths are graphically summarized in
Fig. 2 together with corresponding statistics for all of the soft tissue measurements reported
in Ref. 8. This comparison indicates that wavefront distortion caused by soft tissues in the
chest wall simulations is comparable to measured distortion. Arrival time fluctuations and
energy level fluctuations for simulated distortion are slightly less than measured values, but
mean values of both fluctuations for the simulations fall well within one standard deviation of
the corresponding mean fluctuation for the measurements. The waveform similarity factor,
however, is substantially higher for simulations than measurements, indicating that sim-
ulated waveforms were distorted considerably less than measured waveforms. Correlation
lengths for the simulated distortions are somewhat less than measured values. However,
consistent with measurements, the mean correlation length of the simulated arrival time
fluctuations is greater than that for the simulated energy level fluctuations.

As in Ref. 8, rib structures were found to cause much more distortion than soft tissue
alone. The varied nature of distortion caused by rib effects is illustrated in Fig. 3, which

shows three representative sets of measured signals for specimen 8L. These measurements
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were obtained by the methods reported in Ref. 8. The first panel shows 96 adjacent measured
signals, along the array direction (approximately parallel to the ribs) for propagation through
a tissue path within an intercostal space. The signals are not severely distorted; secondary
arrivals are discernible, but are of lower amplitude than the main arrival. The second panel
shows 96 measured signals for an elevation over a rib. Here, all signals are severely distorted.
Multiple arrivals, as well as high-amplitude spatially-random fluctuations, are seen. The
third panel shows 50 measured signals along the elevation direction (perpendicular to the
ribs), centered over the soft tissue between the ribs. Here, the main wavefront is curved
rather than straight, an additional arrival behind the main wavefront is seen, and portions
of the signals from ov;zr the ribs (at both edges of the panel) are advanced relative to the
signals from the central soft tissue region.

The present simulations allow more detailed qualitative and quantitative investigation
of rib effects than were possible from the previous measurements. Propagation through two
rib-influenced paths is illustrated in Figs. 4 and 5 by images shown in formats similar to
visualizations of propagation through soft tissue in Ref. 10. Simulated ultrasonic pulses are
superimposed on portions of the tissue maps from Fig. 1.

Figure 4 shows propagation through a thin rib, composed chiefly of cancellous bone, in
cross section 5L (corresponding approximately to path 5L-b). A strong reflection occurs at
the first interface between bone and soft tissue, removing a substantial amount of energy
from the main wavefront. The small, high-contrast trabeculae within the rib cause consid-
erable scattering, as can be observed in panel (b) of Fig. 4. The scattering causes random
fluctuations behind the main wavefront; these fluctuations somewhat resemble those seen in
the measured data of Fig. 3(b). After passing through the rib, as seen in panels (c) and (d)
of Fig. 4, the central portion of the wavefront shows substantial attenuation and distortion.
However, the average arrival time of the wavefront is not greatly changed by propagation
through the rib, but is advanced by only about one-half period. This phenomenon appar-
ently occurs because the influence of the “slow” marrow (modeled here as fat) counteracts

the influence of the “fast” trabeculae. Noteworthy is that the predominant ultrasonic wave-
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length has increased after propagation through the rib, so that the effective center frequency
of the wavefront has been lowered. Since the absorption model used in the present study
includes only frequency-independent absorption, the loss of short-wavelength components in
this simulation results only from frequency-dependent scattering caused by the trabeculae.

Propagation within path 8L-b, which includes two larger ribs and the corresponding
intercostal space, is illustrated in Figure 5. At the position of the cross section, these
ribs are composed primarily of cartilage and surrounded by a thin layer of cortical bone.
Since the cartilage and bone of these ribs is modeled as homogeneous, small-scale scattering
within these tissues did not occur in this simulation. Instead, the wavefront is reflected from
interfaces between cartilage, bone, and soft tissue.

The visualization shown in Fig. 5 provides physical reasons for all the rib-related distor-
tion phenomena seen in the measured data of Fig. 3(c). The wavefronts propagating through
the ribs show greater attenuation than that in Fig. 4, both because of the high absorption
of the ribs and because of the reflections noted above. These wavefronts are also advanced
relative to the wavefront propagating through the intercostal space, because of the higher
sound speed of both bone and cartilage. The wavefront propagating through the in‘percostal
space is distorted somewhat by the inhomogeneous soft tissue path, as can be observed in
panels (b) and (c). However, much greater distortion results from interaction between the
wavefront and the ribs. A rightward-propagating reflection, seen in panels (b) and (c), com-
bines with the main wavefront in panel (d) to result in severe distortion at the right side of
the central wavefront. Furthermore, diffraction from the edges of the ribs results in large
curvature of the soft-tissue wavefront.

Distortion and attenuation statistics for a variety of rib-influenced paths are shown in
Table III. Footnotes in Table III indicate physical causes of distortion present within each
path. A variety of distortion and attenuation mechanisms are illustrated. Propagation
through small intercostal spaces (paths 4L-a, 8L-b, 8L-f, and 7R-a) causes diffraction effects
that introduce substantial curvature into the wavefront, as seen in Fig. 5. This large-scale

wavefront curvature is associated with large arrival time fluctuation values although the
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wavefronts generally appear to be locally smooth. Interference between directly-transmitted
and rib-reflected wavefronts (paths 4L-a, 8L-b, 8L-d, 8L-f, and 7R-a) introduces arrival
time, energy level, and waveform distortion substantially greater than that for soft tissue
paths without ribs. Propagation through cancellous bone (paths 4L-a, 4L-b, 5L-b, and
8R-c) results in considerable attenuation and large waveform distortion, while propagation
through cortical bone and cartilage (paths 4L-a, 4L-b, 8L-a, 8L-c, 8L-e, 8L-g, 7L-c, TR-a,
7R-b, and 8R-c) results in even larger attenuation but smaller distortion. Where bone is
embedded within cartilage (paths 7-Lc and 7R-b), additional scattering also occurs. For the
path including a large bone inclusion (paths 7R-b), this scattering results in extremely high
energy level and waveform distortion.

Frequency-dependent wavefront distortion statistics are summarized in Fig. 6. Tissue
paths used for these computations, none of which include rib structures, are those labeled
41-d, 4L, 5L-a, 5L-c, 8R-a, 8R-b, 7L-a, and 7L-b in Fig. 1. The results shown in Fig. 6
indicate that arrival time fluctuations, energy level fluctuations, and waveform distortion
all become more severe with increasing pulse frequency. The most dramatic change is in
the energy level distortion; on average, the rms energy level fluctuations for the 3.0 MHz
signals are 2.3 times those for the 1.6 MHz signals. Correlation lengths of both arrival
time and energy level fluctuations decrease with frequency, so that the predominant length
scales of ultrasonic wavefront distortion are seen to decrease with the ultrasonic wavelength.
As with the rms distortion statistics, the most dramatic frequency-dependent change is in
the energy level fluctuations. Still, even the high-frequency pulses here show substantially
smaller distortion than that previously observed in experiments and simulations for the

human abdominal wall.10712:35
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IV. DISCUSSION

As with earlier simulations of propagation through tissue,'®? the current study shows
qualitative agreement with measured wavefront distortion results for similar specimens.®
However, the accuracy of the present model is limited by simplifications of true tissue struc-
ture. In particular, the computational model here does not account for property variations
within tissue types, tissue microstructure, or three-dimensional tissue structure. These lim-
itations are discussed, with respect to soft tissues, in Ref. 10.

The modeling of ribs adds additional complication. In the current study, individual
trabeculae were assumed to be composed of tissue having properties identical to cortical
bone, an assumption known as Wolff’s hypothesis.®® The validity of this hypothesis has been
questioned;3”*® however, measured elastic properties of individual trabeculae vary widely®"38
and recent work® has provided support for Wolff’s hypothesis. Thus, the properties em-
ployed here for trabecular bone can be regarded as a reasonable order-of-magnitude estimate.
Likewise, the modeling of marrow as fat tissue is a simplifying assumption that may have
limited validity, although available data suggest that the density and sound speed of marrow
are close to those for other adipose tissues.?? In addition, the present model for cartilage
is based on measurements of normal cartilage, while the cartilage present in the specimens
employed here was calcified due to the age of the donors. However, density measurements
made on eight representative samples of calcified cartilage (two from specimen 7R, four
from specimen 1R,® and two from an unused specimen) resulted in an average density of
0.00111 kg/m3, which is different by only 1% from the density assumed here. Since sound
speed in calcified tissue has been empirically shown to be directly related to density,**! this
small change in density suggests that the acoustic properties of the calcified cartilage in our
specimens is close to that for normal cartilage.

The computations reported here model the chest wall as a fluid of variable sound speed,
density, and compressibility. This model implicitly neglects shear wave propagation. The

neglect of shear waves in soft tissues is believed to be justified because absorption of shear
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waves in soft tissues is much greater than absorption of longitudinal waves.??43 In calcified
tissues, however, significant shear waves are known to be generated.***5 In the current
scattering configuration, some shear waves are likely generated wherever the rib surface is
far from parallel to the wavefront. However, since shear wave absorption has been found to
be somewhat larger than longitudinal wave absorption for ultrasonic propagation in bone,**
the significance of shear-wave propagation within bone on transmitted ultrasonic wavefronts
is questionable. For this reason, omission of nonlongitudinal waves in the present study,

6 is believed to be

as in another computational study of ultrasonic scattering from bone,*
justified; however, further study would be required to confirm this assumption.

The absence of frequency-dependent absorption is a possible source of error in the present
estimates of total tissue attenuation, energy level fluctuations, and waveform distortion.
However, since absorption in tissue increases approximately linearly with frequency, lower
absorption for frequency components below the pulse center frequency would nearly cancel
higher absorption for frequency components above the center frequency, so that the average
absorption incurred by a wideband pulse should still be computed with fair accuracy. For
this reason, the absence of frequency-dependent absorption in the calculations reported here
is not considered to be a significant source of error in the computed attenuation or energy
leve] fluctuation curves. Still, inclusion of frequency-dependent absorption would result in
additional waveform distortion effects. The lack of this effect is a likely reason for the
lower waveform distortion (higher waveform similarity factors) obtained from simulations
as compared to measurements. However, the absence of frequency—dependent absorption
effects allowed frequency-dependent scattering effects to be clearly quantified separately
from absorption effects.

Although the simulations were planned to match the measurements of Ref. 8 closely,
a number of differences remain. The most important of these, as discussed in Ref. 10, is
that the simulations were performed using a two-dimensional tissue model while the mea-

surements were inherently three-dimensional. Other differences include details of the source

waveform and wavefront shape, variations in the specimen orientations and the regions in-
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terrogated, and variations in the distance between the specimen and the real or simulated
receiving aperture. All of these differences could contribute to discrepancies between mea-
surements and simulations.

In general, most of the simplifying assumptions in the present tissue model are likely to
result in underestimation of wavefront distortion produced by the human chest wall. In-
corporation of tissue microstructure, spatially-dependent acoustic properties for each tissue
type, shear wave propagation in bone and cartilage, three-dimensional propagation, and
frequency-dependent absorption could all result in greater spatial and temporal variations
in the propagating acoustic fields, so that these features could produce simulated distortion
with characteristics closer to measurements. For this reason, distortion statistics computed
using the present tissue model should be interpreted as lower limits for the statistics of
distortion occurring in real chest wall tissue.

Additionally, some of the discrepancy between simulated and measured distortion may
be explained by the nonuniform characteristics of the receiving transducer employed in the
measurements.® The water-path measurements reported in Ref. 8 show arrival time fluctu-
ations (mean 2.21 ns) and energy level fluctuations (mean 0.36 dB); although small, these
fluctuations are comparable to the difference between the average measured and simulated
fluctuations. Thus, compensation for arrival time and energy level fluctuations due to trans-
ducer irregularities could reduce measured distortion to levels closer to the simulations.
Also, the waveform similarity factor for water path measurements was 0.991,% which indi-
cates greater waveform distortion than the average value of 0.995 computed here for soft
tissue paths. Thus, compensation of the measured data for transducer impulse-response vari-
ations could raise the measured waveform similarity factor to a value in closer agreement
with simulations.

Previous experimental measurements of wavefront distortion caused by the human chest
wall® have suggested that distortion caused by chest wall soft tissues is less severe than that
caused by the human abdominal wall.}!*> This difference has been observed to occur even

though average specimen thicknesses were comparable in chest wall® and abdominal wall*!:3
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measurements. The present study provides support for these results; arrival time and energy
level distortion by the chest wall was found here to be smaller than that produced by the
abdominal wall in previous simulation studies.!®!? For the simulations, this difference may
be partially explained by the fact that the chest wall specimens employed here are thinner
on average (mean thickness 17.5 mm) than the abdominal wall cross sections employed in
Refs. 10 and Ref. 12 (mean thickness 26.7 mm). Another possible partial explanation is
that the pulse center frequency employed in abdominal wall measurements and simulations
was 3.75 MHz, significantly higher than the center frequency of 2.3 MHz for the chest wall
measurements and simulations. Differences in pulse frequency and specimen thickness may
explain the discrepancy in energy level distortion between the abdominal wall and chest wall,
but do not fully explain the discrepancy in arrival time distortion results. For instance,
the mean arrival time and energy level fluctuations per unit length are 1.02 ns/mm and
0.083 dB/mm for the present study vs. 1.96 ns/mm and 0.105 dB/mm for the abdominal
wall cross sections of Ref. 10 and 12. Arrival time distortion was shown here to increase only
subtly with increasing pulse frequency, so that this discrepancy in arrival time fluctuations is
not fully explained by pulse frequency differences. However, energy level fluctuations increase
markedly with frequency for chest wall tissue. Thus, for equal ultrasonic pulse frequencies,
chest wall tissue should cause energy level distortion per unit length comparable to that
caused by abdominal wall tissue.

It was suggested in Ref. 8 that chest wall morphology may differ from abdominal morphol-
ogy in a manner that results in smaller ultrasonic wavefront distortion. The cross sections
employed here can be compared with those employed in Ref. 10 and Ref. 12 to evaluate
the importance of morphological differences between chest wall and abdominal wall tissue.
One difference between the two groups of cross sections is the nature of the subcutaneous
fat layers. The abdominal wall cross sections generally contain thicker fat layers, containing
many more lobular structures than the chest wall cross sections. Since the high contrast
between septa and fat causes substantial ultrasonic scattering,'"'2 this morphological dif-

ference is likely to result in lower overall energy level and waveform distortion for chest
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wall tissue (although, as discussed above, the energy level distortion per unit propagation
length should be comparable). Also, the abdominal wall and chest wall cross sections have
markedly different structure within the muscle layers that occur below the subcutaneous
fat. The abdominal wall cross sections have many large-scale features due to aponeuroses
(interfaces between muscle groups, composed of connective tissue and fat) and large fatty
regions. These large-scale features cause large wavefront fluctuations that are associated
with large rms arrival time fluctuations.!®'2 In contrast, muscle layers of the chest wall cross
sections considered here contain primarily smaller-scale structure associated with small is-
lands of interlaced fatty tissue. This morphological difference may result in lower large-scale
arrival time fluctuations but significant energy level fluctuations associated with scattering,
consistent with the differences between distortion caused by soft tissues in the abdominal
wall and the chest wall.

The present results for frequency dependence of distortion provide further insight into
the importance of scattering effects relative to large-scale structure in wavefront distortion
caused by soft tissues. If wavefront distortion in the chest wall were caused only by large-
scale tissue structures, wavefront distortion to be roughly independent of frequency, since
propagation effects are independent of frequency in the geometric acoustics limit. How-
ever, distortion caused by scattering effects should increase with the pulse frequency for
inhomogeneities of size comparable to the wavelength. Previous simulation and experimen-

tal studies!®™12

on distortion caused by the human abdominal wall have suggested that
energy level fluctuations and waveform distortion are generally associated with scattering
effects, while arrival time fluctuations are predominantly caused by large-scale path length
differences. The present results, while consistent with those conclusions, indicate that scat-
tering plays a role in all types of distortion considered here. Since energy level fluctuations
and waveform similarity factors exhibit more dramatic increases in distortion with increas-
ing pulse frequency, the present results suggest that scattering is of primary importance in

causing energy level and waveform distortion and of secondary importance in causing arrival

time distortion.
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These results can be employed to evaluate the potential of various approaches to im-
prove echocardiographic imaging. Available acoustic windows for transthoracic imaging are
severely limited by the presence of the ribs, so that image quality cannot be significantly
improved by increase of aperture size. The present results also indicate that use of higher-
frequency probes may provide less benefit than expected because of frequency-dependent
scattering in the chest wall.

For these reasons, aberration correction methods are potentially important in transtho-
racic echocardiography, particularly for higher-frequency imaging. The frequency-dependent
distortion results reported here suggest that distortion models employing single phase screens
may be of some benefit for aberration correction in echocardiography through soft tissue
paths. The relatively weak dependence of arrival time fluctuations on pulse frequency sug-
gests that a large portion of arrival time variations are caused by tissue structures too large
to cause significant frequency-dependent scattering effects. Similar conclusions regarding
the importance of large-scale structure to arrival time fluctuations have also been drawn
from results presented in Refs. 10 and 12.

Still, the present results, like those from earlier studies,0™!2

suggest that single phase
screens will not provide complete correction for distortion caused by soft tissues. In partic-
ular, methods employing single phase screens will not completely remove distortion caused
by scattering. The sharp increase of amplitude and waveform distortion with frequency, as
well as the moderate increase of arrival time distortion with frequency, indicate that scat-
tering effects become much more important to ultrasonic aberration as imaging frequencies
increase. Furthermore, phase screen models do not inherently account for distortion caused
by rib structures, shown here to produce diffraction, reflection, and scattering. Thus, any
attempted correction using only phase screen models is likely to provide little improvement
in the presence of strong rib-induced effects.

Other correction models that incorporate rib structures may provide greater image im-

provements for the distortions most important to echocardiography. Processing wavefronts

with techniques such as angular spectrum filtering can remove some spurious arrivals,*” al-
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though such computations may be difficult to incorporate into a general correction algorithm.
Other possible methods include those incorporating models of tissue structure. Models in-
corporating ray acoustics® may provide improvement, but implicitly neglect diffraction and
scattering effects, so that aberration correction would be incomplete, particularly for small
intercostal spaces. A more complete aberration correction method could employ synthetic
focusing using full-wave numerical computation of acoustic fields within sufficiently accu-
rate models of tissue structure. This method has been implemented, within the context of a
quantitative frequency-domain inverse scattering method, in Ref. 48. However, the results
presented here indicate that distortion caused by soft tissue and rib structures varies widely
based on morphological variations between (and within) individuals. Thus, for any general
correction method employing models of tissue structure, separate models of tissue structure

must be constructed for each region of interest.
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V. CONCLUSIONS

A computational study of ultrasonic propagation through the chest wall, including tissue-
dependent absorption as well as detailed anatomical cross sections, has been presented. For
soft-tissue paths, computational results for arrival time distortion, energy level distortion,
and correlation lengths of these distortions are comparable to those reported in previous
chest wall measurements. Both simulations and measurements indicate that arrival time
distortion and energy level distortion caused by soft tissues in the human chest wall is
smaller than that caused by the human abdominal wall. Differences in morphology between
the abdominal wall and the chest wall provide a probable explanation for this difference.

Distortion caused by rib structures is much more severe than that caused by soft tissues.
Reflections and diffraction from rib structures complicate wavefronts that travel through
soft tissue paths adjacent to ribs and can cause arrival time and energy level fluctuations
much greater than those induced by soft tissue structures. Wavefronts propagating directly
through rib structures are attenuated by both internal absorption and reflection at interfaces
between bone, cartilage, and soft tissue. Internal scattering within rib structures causes
distortion phenomena that include severe waveform and energy level distortion, additional
attenuation, and lowering of the effective frequency for the transmitted pulse. The strong
dependence of distortion on the morphological details of rib structures presents a major
challenge for aberration correction in echocardiography.

Simulation of propagation through soft-tissue paths using three different pulse frequencies
has indicated that the distortion types investigated here have different frequency dependence.
Arrival time fluctuations increase subtly with frequency, while energy level and waveform
distortion increase greatly. Thus, a substantial portion of arrival time fluctuations in the
chest wall may be explained by large-scale tissue variations, but some arrival time distortion
and most energy level and waveform distortion apparently result from scattering. Thus,
correction of wavefront distortion caused by soft tissues should become both more important

and more challenging as pulse frequencies employed in imaging systems are increased.
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TABLES

TABLE I. Assumed physical properties for each tissue type employed in the simulations.

Tissue Sound Speed Density Absorption
Type (mm/ps) (g/cc) (dB/mm)
Water 1.524 0.993 0.0007
Fat 1.478 0.950 0.12
Muscle 1.547 1.050 0.21
Connective 1.613 1.120 0.37
Cartilage 1.665 1.098 0.97
Bone 3.540 1.990 4.37

TABLE II. Statistics of wavefront distortion caused by thirteen soft-tissue paths within chest
wall cross sections. The statistics shown include the average specimen thickness for the tissue path
considered, rms values and correlation lengths (CL) of the arrival time fluctuations (ATF) and the
energy level fluctuations (ELF), the waveform similarity factor (WSF), and the total attenuation.

ATF ELF
Thickness rms CL rms CL WSF Attenuation
Path (mm) (ns) (mm) (dB) (mm) (dB)
4L-c 15.4 32.0 0.60 1.98 1.68 0.981 5.62
4L-d 12.7 10.0 2.58 0.46 1.23 0.999 4.08
4L-e 16.0 10.0 1.37 1.61 1.74 0.998 5.26
4L-f 17.0 17.3 2.48 0.92 1.61 0.999 5.33
5L-a 11.0 11.6 0.95 1.51 1.13 0.991 4.29
5L-c 15.0 14.8 1.03 1.15 1.19 0.996 5.01
7L-a 16.2 16.8 2.64 0.95 1.29 0.999 5.46
7L-b 14.9 22.5 2.66 1.19 1.61 0.998 4.91
TR-c 17.7 174 1.77 2.52 2.07 0.997 5.83
7R-d 21.0 8.3 1.10 0.85 1.79 0.999 7.07
7R-e 24.7 13.7 1.37 1.06 1.62 0.997 8.69
8R-a 23.8 26.6 1.78 2.58 1.40 0.992 7.76
8R-b 22.2 29.9 1.44 1.95 1.11 0.989 6.09
Mean 17.5 17.8 1.67 1.44 1.50 0.995 5.80
St. Dev. 4.2 7.8 0.71 0.66 0.30 0.005 1.33
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TABLE III. Statistics of wavefront distortion caused by fourteen tissue paths including rib
structures. The footnotes associated with the label for each path indicate morphological features
and physical phenomena that affected the wavefront distortion computed for that path. The format
is analogous to that in Table II.

ATF ELF
Thickness rms CL rims CL WSF Attenuation
Path (mm) (ns) (mm) (dB) (mm) (dB)
4L-a1:23:4 21.0 260.3 3.00 2.58 2.72 0.968 15.33
41-b23 17.6 161.9 1.90 4.16 1.49 0.641 43.35
5L-b? 14.2 92.5 0.69 3.06 1.92 0.775 26.87
TL-c3° 17.8 47.2 1.58 5.33 2.04 0.958 19.66
7TR-al34 30.4 123.1 2.12 3.80 1.78 0.960 16.57
7TR-b3" 24.3 165.6 2.71 6.88 2.07 0.274 43.06
8L-a3 25.3 113.9 1.18 7.75 2.29 0.907 32.44
8L-bl4 22.8 109.7 2.05 3.43 1.22 0.974 10.28
8L-c3 28.8 134.0 2.75 3.04 1.57 0.944 40.47
8L-d* 23.6 78.9 0.64 3.06 1.55 0.950 6.78
8L-€3 26.4 208.8 1.91 3.62 1.50 0.810 44.27
8L-fl:4 28.5 169.9 1.79 5.02 1.95 0.916 10.70
8L-g> 27.6 210.8 1.40 3.36 1.35 0.892 44.22
8R-c23 24.9 81.4 2.08 2.76 1.25 0.962 44.32

1Small intercostal spaces
2Cancellous bone

3Cortical bone and cartilage
4Strong rib reflections

5Cortical bone within cartilage
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FIG. 1. Chest tissue maps used in simulations. Simulated apertures are indicated using
lower-case letters for each cross section. Smaller arrows indicate 55-element (11.60 mm) aper-
tures while large arrows indicate 68-element (14.28 mm) apertures.
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FIG. 2. Summary of distortion statistics for soft tissue paths. The bar chart shows mean values
of the rms arrival time fluctuations (ATF), rms energy level fluctuations (ELF), correlations lengths
(CL) of these fluctuations, and waveform similarity factors (WSF) for the simulations performed
in the present paper and the experiments reported in Ref. 8. Error bars indicate a range of plus
or minus one standard deviation from the mean.
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FIG. 3. Measured waveforms for three propagation paths in specimen 8L. Each panel shows re-
ceived waveforms on a bipolar logarithmic gray scale with a dynamic range of 40 dB. The horizontal
range shown in each panel is 20 mm and the vertical range shown is 6.4 us. (a) Tissue path be-
tween two ribs, in azimuth direction (parallel to ribs). (b) Path including a rib, azimuth direction.
(c) Tissue path including intercostal space between two ribs, elevation direction (perpendicular to
ribs).
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FIG. 4. Propagation through the central rib in cross section 5L (path 5L-b). Panels (a)—(d)
show instantaneous acoustic pressure fields at successive intervals of 2.17 us. Each panel shows an
area that spans 20.32 mm horizontally and 14.58 mm vertically. Logarithmically compressed wave-

fronts are shown on a bipolar scale with black representing minimum pressure, white representing
maximum pressure, and a dynamic range of 57 dB.
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FIG. 5. Propagation through an intercostal space in cross section 8L (path 8L-b). Panels
(a)—(d) show instantaneous wavefields at successive intervals of 3.62 us. Each panel shows an area
that spans 28.27 mm horizontally and 21.20 mm vertically. Wavefronts are shown using the same
format as in Fig. 4.
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FIG. 6. Summary of frequency-dependent distortion results. Mean rms arrival time fluctua-
tions (ATF), energy level fluctuations (ELF), correlation lengths (CL) of these fluctuations, and
waveform similarity factors (WSF) are shown for each of the three pulse frequencies investigated.
Error bars indicate a range of plus or minus one standard deviation from the mean.
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Abstract

Large-scale simulation of ultrasonic pulse propagation in inhomogeneous tissue is important
for study of ultrasound-tissue interaction as well as for development of new imaging methods.
Typical scales of interest span hundreds of wavelengths; most current two-dimensional methods,
such as finite-difference and finite-element methods, are unable to compute propagation on this
scale with the efficiency needed for imaging studies. Furthermore, for most available methods of
simulating ultrasonic propagation, large-scale three-dimensional computations of ultrasonic scat-
tering are infeasible. Some of these difficulties have been overcome by previous pseudospectral
and k-space methods, which allow substantial portions of the necessary computations to be exe-
cuted using fast Fourier transforms. This paper presents a new k-space method that has advantages
of both past k-space methods and pseudospectral methods. In this method, the spatial differential
equations are solved by a simple Fourier transform method and temporal iteration is performed us-
ing a k-t space propagator. The applicability of the k-space method to large-scale soft-tissue mod-
eling is shown by simulating propagation through several tissue-mimicking cylinders as well as a
model chest wall cross section. Numerical results indicate that this method is accurate for large-
scale soft-tissue computations, with much greater efficiency than that of an analogous leapfrog
pseudospectral method or a 2-4 finite difference time-domain method. However, numerical results
also indicate that the k-space method is less accurate than the finite-difference method for a high-
contrast scatterer with bone-like properties, although qualitatively reasonable results can still be
obtained by the k-space method with high efficiency. Possible extensions to the method, including

three-dimensional computations and inclusion of absorption effects, are discussed.




I. INTRODUCTION

Computation of a scattered acoustic field, given an incident wavefield and complete specification of
an inhomogeneous medium, is known as the forward scattering problem. In contrast, computation
of medium parameters given the incident and the scattered field is known as the inverse scattering
problem. Numerical solution of the forward scattering problem is central to many aspects of ul-
trasonic imaging, including inverse scattering methods, numerical studies of wavefront distortion,
and development of new methods for adaptive focusing.

Most methods for numerical solution of the forward scattering problem fall into one of three
categories: finite-difference methods, finite-element methods, and spectral methods. Finite-
difference and finite-element methods are known as local because the wave propagation equations
of interest are solved at each point based only on the states of nearby points. In contrast, spectral
methods such as the k-space method [1]-[6] and the pseudospectral approach [7]-[13] are called
global because information from the entire wavefield is employed to solve the wave propagation
equations at each point. Because of their global nature, spectral methods can be more accurate
than local methods—for instance, pseudospectral methods applied to periodic problems have been
shown to be equivalent to finite-difference methods of infinite order [11].

Spectral methods also have considerable advantages for large-scale forward solvers because the
required storage and the number of operations per iteration can be dramatically reduced compared
to local methods. This advantage occurs for two reasons. First, since spectral methods contain
derivatives and/or convolutions that can be evaluated using fast Fourier transforms, the number
of operations per iteration is proportional to N log, N for two-dimensional computations, while
the number of operations per iteration is proportional to N? for implicit finite-element methods
[14]. Second, the increased accuracy of spectral methods can allow computations to be performed
on coarser grids while maintaining accuracy. For example, finite-element methods and high-order
finite-difference methods typically require grid spacings on the order of eight points per minimum
wavelength, while second-order finite-difference methods can require twenty points per wave-
length [9]. Spectral methods, in theory, require only two points per wavelength (spatial Nyquist
sampling), although for computations of propagation in inhomogeneous media, greater accuracy
is achieved with grid spacings on the order of four points per wavelength [9, 10, 13].

This report addresses the problem of large-scale ultrasonic wave propagation in biological me-

dia such as human tissue. For problems of interest in medical ultrasound, domain sizes can often




exceed the capabilities of conventional forward solvers. For example, one calculation of realistic
scale would be the simulated propagation of a pulse with an upper bandwidth limit of 5 MHz in
a volume of dimensions 30 mm on each side and a nominal sound speed of 1.5 mm/us, so that
the minimum wavelength is 0.3 mm. For this calculation, a second-order finite-difference method
(using twenty points per wavelength) would require a three-dimensional grid containing 8 x 1010
nodes, a finite-element or fourth-order finite-difference method (using ten points per wavelength)
would require 1 x 10° nodes, and a spectral method (using four points per wavelength) would re-
quire 6.4 x 107 nodes. Since a grid of 6.4 x 107 single-precision complex numbers requires storage
of 512 megabytes, only spectral methods are feasible for realistic three-dimensional computa-
tions on present-day computers that typically have a maximum random-access memory storage of
several gigabytes. The efficiency provided by fast Fourier transform implementations of spectral
algorithms is a further reason why spectral methods are a practical approach to large-scale and
three-dimensional computations of ultrasonic wave propagation.

Previous spectral approaches have included pseudospectral methods, in which spatial deriva-
tives are evaluated globally using Fourier transformation and wavefields are advanced in time using
various numerical integration techniques [7]-[13]. This method has provided high accuracy in may
cases; however, temporal iteration techniques that provide good accuracy for large-scale models
typically require significant additional computations and/or storage of wave fields from additional
time steps [12], so that the efficiency advantages of the pseudospectral approach are less than might
first be expected. The k-space family of methods [1]-[6] can overcome this problem by providing
explicit temporal propagators related to the Green’s function for wave propagation in k-t (spatial
frequency and time) space. Previous implementations of the k-space method have posed the spa-
tial part of the wave propagation equations in an integral form that can be solved using discrete
convolution [1]-[6]. Although this method has been shown to be efficient and accurate, the dis-
crete convolution step, which employs inherently singular spatial Green’s functions, can present
complexities in numerical implementations.

The present paper presents an alternative derivation of the k-space method using a differential
representation of the wave propagation equations. The spatial part of the wave propagation equa-
tions is solved using Fourier transforms in a manner analogous to past pseudospectral methods;
this derivation is shown to be theoretically equivalent to previous integral formulations of the k-
space method. Temporal iteration is performed using a k-t space propagator [2], which is shown to

provide much greater accuracy than “leapfrog” iteration without significant additional computation




or storage requirements. Thus, the new k-space method has advantages previously associated with
both pseudospectral and integral k-space methods.

Below, a derivation of the new k-space method is presented for propagation in fluid media
with spatially-dependent sound speed and density. For several canonical forward problems rel-
evant to ultrasonic imaging, the accuracy and efficiency of the k-space method is compared to
a pseudospectral method employing leapfrog iteration and to a 2-4 finite difference time-domain
method. The k-space and finite-difference methods are also used in an example computation for
a large-scale two-dimensional tissue model. Possible extensions of the new k-space method, in-
cluding multiple relaxation effects for absorption, full elastic wave propagation, perfectly matched
layers for absorbing boundary conditions, three-dimensional computations, and parallelization, are

discussed.




II. THEORY

A. Derivation of the k-space method

A new k-space method for solving the acoustic forward scattering problem is derived here. The
method is applicable to large-scale modeling of linear ultrasonic propagation in soft tissues, which
are modeled here as fluid media with spatially-dependent sound speed and density. Although the k-
space method described below can be extended to include absorption effects, acoustic nonlinearity,
and shear-wave propagation, these effects are neglected in this derivation for simplicity.
For a fluid medium with spatially-dependent sound speed and density, the wave equation is
2
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where p(x, ) is the acoustic perturbation in pressure, p(x) is the ambient density, and c(x) is the

ambient sound speed.

By defining the normalized wavefield

f(x,t) = p(x,1) /y/p(x,1), )

Eq. (1) can be rewritten in the form
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where

b(x) = /o) ¥ (1//0()). )

The normalized field f may now be split into an incident and a scattered part, f(x,t) =

fi(x,t) + fs(x,t). The normalized incident field f; satisfies the homogeneous wave equation

2p 1 azfi(x,t) . ’
A\ fz(X, t) — %—_‘{%2— = 0, (5)

where cg is a nominal “background” sound speed for the inhomogeneous medium, while the nor-

malized scattered field f; satisfies the inhomogeneous equation

10%fy(x,t) [ 1 1Y 8f(x,1)
2 e (c(x)2 - EZ) 5z +b(x) f(x,1). (6)

The terms on the right hand side of Eq. (6) are effective sources of scattered waves, and can be

V2fi(x,1)

written in terms of a source associated with sound speed variations,

o(1) =
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c(x)?
5

- 1) f(X,t), (7)




and a source associated with density variations,

q(x,t) = 5 b(x) f(x,1). (8)

With the additional definition of an auxiliary field w(x,t) = fs(x,t) + v(x,t), Eq. (6) can be
written as

VA0 = 20D g i), o)

After spatial Fourier transformation of Eq. (9), the inhomogeneous-medium wave equation can be

written as the coupled set of equations
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where capital letters denote spatially Fourier transformed variables and the sound speed contrast

function d(x) is defined as

dx) =1- ——. (13)
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In numerical implementation of the k-space algorithm, Eq. (10) is used to advance the auxiliary
field W (k, t) in time, Eq. (11) updates the effective source v associated with sound speed varia-
tions, and Eq. (12) updates the effective source g associated with density inhomogeneities. Notable
is that the effective source v is directly proportional to the square of the sound speed variation of
the medium, while the effective source ¢ is directly proportional to the Laplacian of 1 /\/m .
Thus, for a piecewise-constant inhomogeneous medium, v may be non-zero everywhere while q is
nonzero (and singular) only on borders between regions.

The algorithm derived above can be considered an extension of Bojarski’s formulation [1, 2],
which was obtained using an integral representation of the acoustic wave equation. This can be

shown by rewriting Eq. (10) using the k-¢ space Green’s function [2]
G(k,t — 7) = cok sinfcok(t — 7)| H(t — 7), (14)

where H is the Heaviside step function. The Green’s function defined by Eq. (14) satisfies the

differential equation
9’G(k, 1)

T k2 G(k,t) = cak?6(t). (15)
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For zero initial conditions, Eq. (10) can then be rewritten as

W(k,t) = cok /0 " sinfcok(t — 7)) <V(k, 7) — —(~ColT)2Q(k, 7’)) dr. (16)
For a medium of constant density, @ = 0 and Eq. (16) reduces to Eq. (56) of Ref. [2]. Thus, the
present method can be considered a generalized form of Bojarski’s k-space method.

Equations (10)—(12) can be written in several different discrete forms. For instance, using a
second-order accurate finite-difference representation of the second-order time derivative, Eq. (10)
can be written in the discrete form

Wi(k,t+ At) —2W(k,t) + W(k,t — At) = (cokAt)? |V (k,t) — W(k,t) — C(gc(okk,)? , (17

where At is the time step. This is known as “leapfrog” iteration; use of Eq. (17) in the cur-

rent method is analogous to commonly used pseudospectral approaches [12, 13]. (Although in-
creased accuracy can be achieved by higher-order methods such as fourth-order Adams-Bashforth
or Adams-Moulton iteration, these methods have the disadvantage of requiring storage of the
entire computational grid for additional time steps [11, 12].) A more accurate form, how-
ever, results from expanding Eq. (16) about the instants ¢ + At¢ and making the approximation
Vik,t) ~ (1/2)[V(k,t + At/2) + V(k,t — At/2)] [2]. This yields the k-t space propagation

equation

cokAt Q(k, )
(cok)? |
(18)

Alternatively, Eq. (18) can be derived from Eq. (10) using the method of mode-dependent

W(k,t+ At) — 2W (k, t) + W(k, t — At) = 4sin’ ( ) lV(k, t) — W(k,t) —

discretization [15], in which a difference operator is chosen to produce the same result as the dif-
ferential operator on a set of chosen “coincident” functions. A natural choice for these coincident
functions is the set of null functions for the differential operator of interest. Here, these are e*'cokt
for the operator 82 /0> + (cok)? that is applied to W in Egs. (10)~(12). By applying the differential
operator 0% /8t% + (cok)? as well as its discrete form to these coincident functions and equalizing
the results, Eq. (18) follows. It may also be noted that Eqs. (17) and (18) are equivalent in the limit
of small At. However, results shown below indicate that use of the k-t propagator (18) provides
much greater accuracy for larger time steps.

The present k-space algorithm can now be summarized as follows:
1. Define the contrast functions d(x) and b(x).

7




2. Initialize the field w(x, t) to zero.

3. Define the incident wave f;(x, t) on the entire grid.
4. Compute v(x, t) using Eq. (11).

5. Compute ¢(x, t) using Eq. (12).

6. Obtain V (k, ), Q(k,t), and W (k, t) by FFT.

7. Evaluate W (k,t + At) from Eq. (17) or Eq. (18).
8. Obtain w(x,t + At) by inverse FFT.

9. Sett — t + At and go to (3).

To distinguish between the standard leapfrog iteration method and the improved method used
here, the following nomenclature is used in the present paper. The above algorithm employing
Eq. (17) for temporal iteration is referred to as a leapfrog pseudospectral method below, while
the algorithm employing Eq. (18) is referred to as a k-space method. This nomenclature is used
because, as shown above, the algorithm employing Eq. (18) is equivalent to an extended form of

Bojarski’s k-space method [2] cast in terms of differential equations rather than integral equations.

B. Numerical stability and accuracy

The stability of the method derived above can be evaluated using standard, linear von Neumann
stability analysis [16]. In this technique, the difference equations that comprise Egs. (17) and (18)
are applied to a test function

Wtest (ka ’I’LAt) = ¢(k)n 1/)(1{), (19)

where (k) is a spatial-frequency domain eigenmode and ¢(k) is a temporal amplification factor.
If a difference equation admits solutions with |¢(k)| > 1 for any vector wavenumber k, errors may
grow exponentially with time and the solution is thus unstable. If |¢(k)| < 1 for all wavenumbers,
then the solution is numerically stable. For simplicity, since results can depend on the inhomogene-
ity employed, this stability computation is performed here under the assumption of a homogeneous

medium.
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Application of this technique to Eq. (17), which represents a leapfrog pseudospectral approach,
yields a quadratic equation for ¢(k). The resulting stability condition is

cma,kaaxAt S 27 . (20)

where Cpax is the maximum sound speed in the region of computation, kmax =7 /Az is the max-
imum wavenumber in the discrete Fourier transforms used to compute W (k, t), and At and Az,
respectively, are the temporal and spatial steps employed. Using the standard definition for a

Courant-Friedrichs-Lewy (CFL) number [17], the stability condition

2
<= 1)
T

is obtained for the leapfrog pseudospectral method represented by Eq. (17).

Application of the same analysis to the k-space method represented by Eq. (18) yields a very
different result: in the absence of inhomogeneities, the linear numerical stability of the k-space
method is unconditional. An upper limit on the minimum required time step, however, arises from
the requirement of sampling at the Nyquist rate: that is, the time step should be sufficiently small
to allow two samples per period for the highest-frequency component of the computed field. Thus,

the requirement can be written

At < — T _ Az 22)

- 2fma.x Cmax kma.x cmax

or simply CFL < ¢p/cmax-

The Fourier transform steps in the above algorithm can lead to numerical artifacts (related to the
Gibbs phenomenon) when the scattering object contains discontinuities in sound speed or density.
To avoid such artifacts, the scattering object can be spatially filtered to smooth discontinuities.
That is, the sound-speed contrast function c4(x)/c? — 1 and the density contrast function of Eq. (4)

are replaced by filtered functions of the form

Ustered (X) = FHU(K) ¢(k)], (23)

in which the Fourier transform U(k) of the function u(x) is multiplied by a low-pass spatial-
frequency filter ¢(k). In the present study, the filter employed is the spatial-frequency Blackman

window [18]
7wk

(k) = 0.42 + 0.5 cos( ) 1+0.08 cos( Z:k ) 24)

kmax

9




Spatial-frequency windowing, like that represented by Eq. (24), naturally reduces high spatial-
frequency components of the wavefield, so such windowing may also allow use of larger time steps

while still meeting the Nyquist criterion of Eq. (22).
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III. Numerical Methods

Numerical implementation of the new k-space algorithm was accomplished using the algorithm
described above. The normalized incident wave f;(x, t) was defined as a plane wave with Gaussian
temporal shape,

fi(%,8) = p(x)# sin(wor) /7, (25)

where 7 is the retarded time 7 =t — (z — Zp)/co and z, is the initial central position of the wave.
Boundary conditions were implicitly periodic.

Wavefields were computed on two-dimensional grids chosen to be large enough to avoid in-
fluence of “wraparound” error within the temporal window of interest. All k-space computations
were performed on square grids of size N by N. Prior to execution of the main computation loop,
the Laplacian occurring in Eq. (4) was evaluated using second-order accurate, centered finite-
difference representations of the second derivative in each direction. Within the main computa-
tional loop, all spatial derivatives were evaluated by Fourier transformation, implemented using a
fast Fourier transform (FFT) algorithm [20]. For maximum FFT efficiency, grid sizes N were cho-
sen to be integers with prime factors no higher than 3. In some cases, wavefields were computed
on a grid of size smaller than N and the fields were zero-padded to size N by N.

The spatial-frequency time-domain wavefield W (k,t + At) was windowed using the rectan-
gular window

(k) = H(kmax — k), (26)

before inversion to yield w(x, t+ At). (That is, between steps 7 and 8 in the algorithm enumerated
above.) In Eq. (26), H is, as before, the Heaviside step function, kp,y is the maximum wavenumber
magnitude (equal to 7/Az), and k is the magnitude of the vector wavenumber k. In some cases,
the contrast functions b(x) and d(x) were also smoothed by windowing in the spatial-frequency
domain using Eq. (24) with a wavenumber cutoff equal to 7 /Az.

For comparison, wavefields were also computed using a second-order in time, fourth-order in
space finite-difference method, described in Refs. [17] and [19]-[23]. For the finite-difference
computations, the incident wave was specified by a single initial condition rather than updated
at each time step. Periodic boundary conditions were applied on the sides perpendicular to the
wavefront, while first-order radiation boundary conditions [23] were applied on the sides parallel to
the wavefront. Time steps were determined using a CFL number of 0.25, which is a natural choice

for this finite-difference method [21]. To reduce the computational burden, domain sizes were
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minimized in the dimension for which the radiation boundary conditions eliminated wraparound
errors. As in Refs. [23]-[25], computations were performed at each time step only on portions of
the grid where the wavefields were nonzero; this reduces the required computation time for the
finite-difference method by about one half.

To quantitatively test the accuracy of the k-space and finite-difference methods, benchmark
computations were performed using an exact series solution for the scattering of a plane wave by a
fluid cylinder [26]. The sampling rate and waveform shape were chosen to match the time-domain
simulation data for the case of interest. The pressure field was then computed for each frequency
component with relative magnitude within 60 dB of the peak magnitude. Each single-frequency
computation truncated the series at the term having a relative contribution less than 107'? times the
sum of all terms. The frequency-domain scattered fields were then inverted by FFT to obtain exact
numerical solutions for the time-domain pressure fields at the simulated measurement points.

Benchmark studies of accuracy were performed using a cylinder with radius 2.0 mm and acous-
tic properties of human fat, and a background medium with acoustic properties of water at body
temperature. Rationale for use of these values is discussed in Ref. [23]. The cylinder had a sound
speed of 1.478 mm/us and a density of 0.950 g/mm?, while the background medium had a sound
speed of 1.524 mm/us and a density of 0.993 g/mm3. The incident pulse was a plane wave with
Gaussian temporal characteristics, a temporal Gaussian parameter 0 = 0.25 s, and a central
starting position of £ = —4.5 mm at time zero. For this pulse, a nominal maximum frequency
is 4.43 MHz, corresponding to the spectral point 40 dB down from the center frequency (for the
benchmark problem, this frequency corresponds to a minimum wavelength of 0.334 mm). The
k-space, leapfrog pseudospectral, finite-difference, and exact methods described above were used
to compute time histories of the total pressure field at 128 equally-spaced “measurement” points
spanning a circle of radius 2.5 mm concentric to the cylinder. The domain size for each computa-
tion employing this cylinder was 9.5 9.5 mm?.

Further studies of accuracy were performed using a cylinder of radius 10 mm. Other parameters
were as described above for the small problem, except that the radius of the measurement circle was
12.5 mm and the starting position of the wavefront was z = —14.5 mm. The k-space method was
employed to compute two cases corresponding to unsmoothed and smoothed contrast functions,
using a spatial step of four points per minimum wavelength and a CFL number of 0.5. In each
k-space computation for this cylinder, the domain size employed was 72 X 72 mm?. The finite-

difference method was employed to compute a single case, using a spatial step of fourteen points
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per minimum wavelength and a CFL number of 0.25. Because storage requirements proved to
be large for this finite-difference computation, the computational configuration was modified to
employ a finite-width plane wave with a 13% cosine taper, as well as radiation conditions on all
computational boundaries. These modifications, which were performed only for the large cylinder
case, allowed reduction of the domain size to 32 x 32 mm?, so that the computation could be
performed within the storage limits of the computer employed.

To evaluate the relative accuracy and efficiency of the k-space and finite-difference methods
for a high-contrast scatterer, computations were also performed using a cylinder of radius 2.0 mm
with the sound speed and density of human bone. The values employed were a sound speed
of 3.54 mm/ps and a density of 1.99 g/mm?®, as in Ref. [25]. The incident pulse, receiver, and
computational domain characteristics were identical to those for the 2.0 mm “fat” cylinder case
described above.

In all of the above accuracy tests, a quantitative measure of the accuracy was obtained using
the time-domain L? error of each approximate pressure field p,yprox (X, t) versus the corresponding
exact series solution Pexact (X, t). This quantity has the definition

— I |paPpT0X(xT) t) — DPexact (XT, t) '2 dz, dt
ff |pexact (X,., t) I2 dx, dt ’

where the integrals are evaluated using discrete summation over all receiver points xz, and the en-

27)

tire time span of the computations. Eq. (27) represents an accuracy criterion that is much stricter
than more general criteria, such as comparison of the rms waveform amplitude or the amplitude
and phase at the center frequency. To achieve a low L? error by the definition of Eq. (27), both the
waveform amplitude and phase must be accurately computed for all significant frequency compo-
nents of the field.

Lastly, the use of the present k-space method in a more realistic simulation of ultrasonic propa-
gation was also tested. For this purpose, a cross-sectional tissue map of the human chest wall [25]
was used as the simulated medium. A pulse center frequency of 3.0 MHz was employed together
with a temporal Gaussian parameter of 0.4766 ps; these parameters correspond to the highest cen-
ter frequency employed in the simulation study reported in Ref. [25]. The corresponding nominal
minimum wavelength is 0.3252 mm. The k-space computation employed 4 points per minimum
wavelength, a CFL number of 0.5, and a grid size of 54.9 x 54.9 mm?. The finite-difference com-
putation employed 14 points per minimum wavelength, a CFL number of 0.25, and a grid size of
38.5x29.7 mm?.
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IV. Numerical Results

An example k-space computation, performed using the 2.0 mm cylinder with acoustic properties
of human fat, is illustrated in Fig. 1. The cylinder boundary is also sketched in each panel. For
the computation shown, the contrast functions d(x) and b(x), which are related to the spatially-
dependent sound speed and density by Eqs. (13) and (4), respectively, were smoothed using Eq. 24.
The time history of the total wavefield is shown as computed by the k-space method for a spatial
step size of four points per minimum wavelength and a CFL number of 0.5. Details visible include
a scattered wave from the edge nearest the initial wavefront (panel 3), some spurious oscillations
near the —60 dB level (panels 4-6), weak focusing near the trailing edge of the cylinder (panel 5),
and scattering from the trailing edge (panels 6-9).

Results of accuracy benchmarks for the k-space and leapfrog pseudospectral methods described
above are shown in Fig. 2. Each of these computations was made using the 2.0 mm radius cylinder
described above and a spatial step size of four points per maximum wavelength. The results show
that the k-space method employing the k-t space propagator of Eq. (18) provides much higher
accuracy than the pseudospectral method employing the leapfrog propagator of Eq. (17). The two
methods provide equivalent results for very small time steps (CFL numbers less than about 0.1), but
the k-space method maintains its highest accuracy up to a CFL number of about 0.7. In contrast,
the pseudospectral method rapidly increases in error for CFL numbers above 0.1.

Error results for the pseudospectral computations shown in Fig. 2 are not given for CFL num-
bers above 0.6 because, for higher CFL numbers, the computation was unstable. (Computed fields
incurred spurious exponential growth, resulting in numerical overflow.) This observation of in-
stability is consistent with the theoretical stability limit of 0.6366 given by Eq. (21) for this case.
Although the k-space method did not incur any numerical instability for the range of CFL num-
bers investigated, the error of this method grows as the CFL number approaches and exceeds unity,
consistent with the Nyquist sampling criterion given by Eq. (22).

The relative accuracy of the k-space and finite-difference methods are compared in Fig. 3 as a
function of the spatial step size. For these computations, the CFL number of the k-space compu-
tations was held constant at 0.5, consistent with the range of accuracy shown in Fig. 2, while the
CFL number of the finite-difference computations was held at 0.25 [21]. Both methods achieve
high accuracy as the grid spacing becomes finer; however, the k-space method achieves higher ac-

curacy for much larger spatial step sizes. The L? error drops below 0.05 for k-space computations
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employing only four points per minimum wavelength, while achievement of the same accuracy
criterion requires 16 points per minimum wavelength for the finite-difference computations. This
difference suggests that storage requirements for k-space computations can be much smaller than
those for finite-difference computations of comparable accuracy: on the order of 16 times smaller
for two-dimensional computations and 64 times smaller for three-dimensional computations.

Visual comparison of simulated waveforms for the 2.0 mm diameter cylinder is shown in Fig. 4.
Waveforms in this figure are those computed using the k-space (four points per minimum wave-
length, CFL number 0.5, with both unsmoothed and smoothed contrast functions), finite-difference
time-domain (14 points per minimum wavelength, CFL number 0.25), and exact methods. The k-
space solution for the unsmoothed cylinder shows the smallest time-domain L2 error (0.0347), but
also exhibits spurious waves (nearly 60 dB down from the peak pressure amplitude) between the
two main arrivals. These spurious waves are removed by use of the k-space method with smoothed
contrast functions (i.e., b(x) from Eq. (4) and d(x) from Eq. (13) smoothed using Eq. (24) with
kmax = 7/Ax), but the L? error is increased to 0.0414 by this smoothing. Visual inspection of
Fig. 4(b) indicates that the amplitude of the backscattered wave is underpredicted by the k-space
method when smoothed contrast functions are employed. The finite-difference result bears a strong
qualitative resemblance to the exact solution, but the larger L? error (0.0529) indicates that phase
errors have been introduced by the dispersion inherent to the finite-difference method. Computa-
tion times (CPU times for a Linux workstation with an AMD K6 processor running at 200 MHz)
were 4.15 minutes for the k-space method and 46.8 minutes for the finite-difference method, so
that the k-space method yields comparable accuracy at much less computational cost.

Waveforms for the 10 mm diameter cylinder are shown in Fig. 5 in a format analogous to
that of Fig. 4. These results indicate that, as for the smaller cylinder, smoothing of the contrast
functions produces a reduction in spurious low-amplitude waves. For this problem, unlike the
2.0 mm diameter cylinder discussed above, this smoothing slightly increases the overall accuracy.
(The time-domain L? error is 0.1080 for the smoothed case versus 0.1103 for the unsmoothed
case.) The finite-difference solution, using 14 points per wavelength and a CFL number of 0.25,
requires longer computation time (14.50 hours vs. 4.61 hours) and produces waveforms with poorer
accuracy (an L? error of 0.1763) than the k-space method.

Results for the 2 mm “bone” cylinder are shown in Fig. 6. In this case, the k-space method using
a CFL number of 0.5 exhibited numerical instability, possibly associated with the failure of this

CFL number to meet the Nyquist condition of Eq. (22). To maintain a consistent temporal sampling
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rate, the time step was reduced in proportion to the increase in cyay, resulting in a CFL number of
0.2153. Required computation time for the k-space method was 9.9 minutes; the time-domain L?
error was 0.3072 for the unsmoothed case and 0.8551 for the smoothed case. As can be seen in
Fig. 6, the k-space computation with smoothing reduces the level of spurious wave-like artifacts,
but shows some wavefield details less accurately than the computation without smoothing. For
the k-space method without smoothing, reduction of the time step by an additional factor of two
resulted in negligible accuracy improvement (L? error 0.3062) and a doubling of the computation
time to 19.7 minutes.

For the “bone” cylinder, the finite-difference method, employing 14 points per wavelength and
a CFL number of 0.1076 (also changed in proportion to cmayx), achieved an L? error of 0.0541 in a
computation time of 189 minutes. This result indicates that finite-difference methods can be much
more accurate than k-space methods for scattering problems involving very high-contrast inhomo-
geneities such as bone within soft tissue. This discrepancy is likely to be associated with inaccurate
representation of high-spatial frequency components of the effective sources However, the k-space
solution, as seen in Fig. 6, still shows good qualitative agreement with the exact solution.

The relative inaccuracy of the k-space method for high-contrast scatterers may be associated
with aliasing effects, as suggested in Ref. [5]. That is, large jumps in spatial contrast functions are
associated with significant high-frequency components of the corresponding k-space spectra. If the
spatial-frequency range employed in the k-space algorithm is not sufficiently large, aliasing errors
result. Smoothing the contrast functions removes this aliasing but introduces additional errors be-
cause the contrast functions are replaced by approximations. In general, removal of aliasing errors
requires a decrease in the spatial step size so that the range of covered spatial frequencies is in-
creased. To demonstrate the effect of spatial-frequency coverage, a test employing finer spatial and
temporal sampling (spatial step of 0.0371 mm, 512 x 512 grid points, CFL number held at 0.2153)
was carried out for the “bone” cylinder. The required computation time increased to 136 minutes,
comparable to the finite-difference computation time of 189 minutes. Despite this increased com-
putational cost, the time-domain L? error increased from 0.3072 to 0.4081 for the unsmoothed
case and decreased only to 0.6841 from 0.8551 for the smoothed case. This indicates that the
aliasing errors were not significantly reduced by this increase in k-space coverage; to achieve ac-
curacy comparable to finite-difference computations for this high-contrast object, computational
and storage costs much greater than those for the finite-difference method may be required.

Computational results for a large-scale two-dimensional tissue model are shown in Fig. 7.
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Waveforms computed by the k-space (four points per minimum wavelength, CFL number 0.5,
no smoothing) and the finite-difference (ten points per minimum wavelength, CFL number 0.25)
were recorded at 130-element apertures composed of simulated point receivers separated by a
pitch of 0.21 mm. The results produced by the finite-difference method and the k-space method
are visually indistinguishable. However, despite the reduced grid size and limited computations
employed for the finite-difference method, the k-space method was more efficient by about a factor
of four: the required CPU time for the k-space method was 1.28 hours, while the corresponding
time for the finite-difference time-domain method was 5.14 hours. This discrepancy in efficiency
is even more impressive when note is made that the k-space method using 4 points per minimum
wavelength provides significantly higher accuracy than the finite-difference method using 10 points
per minimum wavelength (see Fig. 3). Thus, the present k-space method may be an appropriate
replacement for finite-difference methods previously employed to compute propagation through

large-scale soft-tissue models [23]-[25].
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V. Extensions to the k-Space Method

The present method can be extended in a number of ways to increase its range of applicability in
computations of ultrasound-tissue interactions.

Absorption effects could be added to the present algorithm in one of several ways. The most
straightforward method for including absorption is to include an ad hoc damping term proportional
to 8f /0t in Eq. (3) [3]-[5]. This approach yields absorption coefficients proportional to the square
of the frequency. Alternatively, the sound speed c can be replaced with a complex sound speed
including an imaginary part associated with absorption; this approach results in absorption coeffi-
cients directly proportional to the frequency. However, neither of these approaches has a rigorous
justification for use in models of ultrasound propagation in biological tissue.

A physically justifiable approach for inclusion of absorption in the present algorithm is to
consider absorption associated with multiple relaxation processes. The theoretical basis for this
approach is presented in Ref. [27]; one implementation of this method in a finite-difference time-
domain algorithm is given in Ref. [28]. Since multiple relaxation processes can lead to a variety of
frequency-dependent absorption characteristics, this approach provides a possibility of modeling
realistic frequency-dependent attenuation in tissue without introduction of nonphysical dispersion
or violation of causality. Following the méthods presented in Ref. [28], absorption due to multiple
relaxation processes can be implemented in a computationally efficient form. Possible alternatives
include the time-causal absorption formulation of Ref. [29].

Another possible extension to the present method is to incorporate the full elastic wave prop-
agation equations. This extension would account for shear wave propagation, which could sub-
stantially affect results for propagation models including bone and other calcified tissue. By ap-
plying methods similar to those outlined in Refs. [6] and [13] to the algorithm described above, a
full elastic k-space method incorporating Fourier-space evaluation of spatial derivatives and a k-t
space propagator could be implemented.

Boundary conditions of k-space and pseudospectral methods are inherently periodic, so that
simple radiation boundary conditions cannot be straightforwardly implemented. Instead, the tech-
nique of perfectly matched layers [30] may be used in a manner that reduces all waves to near
zero amplitude at the boundaries [12, 13, 28]. Extension of the present method to include perfectly
matched layers is straightforward.

Finally, although all implementations shown in the present paper are two-dimensional, the
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present method can be applied directly to three-dimensional wave propagation without any for-
mal changes. This is possible because the k-t space Green’s function has an identical form for
any number of spatial dimensions [2]. To implement the present methods for three-dimensional
computations, the algorithm outlined above is simply employed using three-dimensional discrete
Fourier transforms.

Computation times for the k-space method can easily be reduced by parallelization. The pri-
mary computational burden of the method is incurred in the multidimensional fast Fourier trans-
forms (FFT) taken at each time step. Since FFT’s can be efficiently executed on parallel processors
[31, 32], the present k-space method should scale efficiently to large problems that require parallel

processing.
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VI. Conclusions

A new k-space method for computation of ultrasonic wave propagation has been presented. The
method efficiently accounts for sound speed and density variations, and can be extended to include
realistic absorption effects and absorbing boundary conditions. Three-dimensional computations
can also be performed without change to the algorithm as derived here.

Numerical results have shown that the new k-space method provides superior stability and
accuracy over both a similar leapfrog pseudospectral method and a fourth-order space, second-
order time, finite-difference method. Because of this improved accuracy, the new method allows
larger spatial and time steps to be employed, so that large-scale multidimensional computations
are more feasible using the new method. Computations using a realistic two-dimensional tissue
model support the finding that the k-space method provides high accuracy and low computational
cost for large-scale computations.

The results also indicate that care should be taken when choosing and implementing a forward
solver for a particular scattering problem. For instance, in the present k-space method, one can
suppress spurious waves by smoothing of contrast functions; however, this smoothing can greatly
increase the time-domain L? error in some cases. Likewise, the finite-difference time-domain
method employed here is less accurate than the k-space method in most cases examined here, but
achieved higher accuracy for a test case with a bone-like scatterer. In general, the k-space method
proposed here should be most applicable to large-scale scattering problems involving low-contrast

inhomogeneities such as soft tissue structures.
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Figure 1: Time history of total acoustic pressure computed by the k-space method for a cylinder of
2.0 mm radius and fat-mimicking acoustic properties. The cylinder boundary is sketched in white.
The first panel shows the wavefield impinging on the cylinder at time ¢ = 0.96 us and subsequent
panels (progressing from left to right and top to bottom) show the total wavefield at intervals of
0.96 ps. The acoustic pressure is plotted in all panels using a bipolar logarithmic scale with a
60 dB dynamic range.
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Figure 2: Time-domain comparison of accuracy for the k-space and leapfrog pseudospectral meth-
ods as a function of CFL number. Each test used the “fat” cylinder of 2.0 mm radius and a spatial
step size of four points per minimum wavelength.
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Figure 3: Time-domain comparison of accuracy for the k-space and finite-difference time-domain
methods as a function of the spatial step size in points per minimum wavelength (PPW). Each test
used the “fat” cylinder of 2.0 mm radius. CFL numbers were 0.5 for the k-space method and 0.25
for the finite-difference time-domain method.
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Figure 4: Computed waveforms for the “fat” cylinder at a radius of 2.5 mm for a cylinder of radius
2.0 mm and a pulse center frequency of 2.5 MHz. The acoustic pressure is shown on a bipolar
logarithmic scale with 60 dB dynamic range. The horizontal range of each plot is 360 degrees,
covering the entire measurement circle starting with angle 0 (forward propagation). The vertical
range of each panel corresponds to a temporal duration of 9. ps, with ¢ = 0 at the top of each
plot. (a) Unsmoothed object; k-space solution with four points per minimum wavelength, L? error
0.0347. (b) Smoothed object; k-space solution with four points per minimum wavelength, L2 error
0.0414. (c) Finite-difference solution with 14 points per minimum wavelength, L? error 0.0529.
(d) Exact solution.
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Figure 5: Computed waveforms at a radius of 12.5 mm for a “fat” cylinder of radius 10.0 mm
and a pulse center frequency of 2.5 MHz. The acoustic pressure is shown in each panel using a
bipolar logarithmic scale with a 60 dB dynamic range. The horizontal range of each panel is 360
degrees and the vertical range is 33 ps. (a) Unsmoothed object; k-space solution, L? error 0.1103.
(b) Smoothed object; k-space solution, L2 error 0.1080. (c) Finite-difference solution, L? error
0.1763. (d) Exact solution.
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Figure 6: Computed pressure waveforms at a receiver radius of 2.5 mm for a “bone” cylinder of
radius 2.0 mm and a pulse center frequency of 2.5 MHz. The format is the same as in Fig. 4. (a)
Unsmoothed object; k-space solution, L? error 0.3072. (b) Smoothed object; k-space solution, L?
error 0.8551. (c) Finite-difference solution, L? error 0.0541. (d) Exact solution.

29




Figure 7: Comparison of k-space and finite-difference methods for a tissue cross-sectional model.
(a) Chest wall cross section (taken from Ref. [24]), with black indicating connective tissue, dark
gray indicating muscle, and light gray indicating fat. The region is 33.5 mm wide and 17.2 mm
high. (b) Transmitted waveforms computed by the k-space method using four points per minimum
wavelength and a CFL number of 0.5, shown on a bipolar linear gray scale with white indicating
maximum positive pressure and black indicating maximum negative pressure. The horizontal range
shown is 27.3 mm and is shown to the same scale as in (a). The vertical range is 3.29 us. (c)
Transmitted waveforms computed by the finite-difference time-domain method using 10 points
per minimum wavelength and a CFL number of 0.25, shown using the same format as in (b).
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4pBB4, Simulation of ultrasonic propagation, scattering, and
attenuation in the human chest wall. T. Douglas Mast (Appl. Res.
Lab., Penn State Univ., University Park, PA 16802,
mast@sabine.acs.psu.edu), Laura M. Hinkelman (Penn State Univ.,
University Park, PA 16802), and Robert C. Waag (Univ. of Rochester,
Rochester, NY 14627)

A finite-difference time-domain model for ultrasonic pulse propaga-
tion through soft tissue [Mast et al., J. Acoust, Soc. Am. 102, 1177-1190
(1997)] has been extended to incorporate absorption effects as well as
longitudinal-wave propagation in cartilage and bone. This extended
method has been used to simulate ultrasonic propagation through anatomi-
cally detailed chest wall models. The inhomogeneous chest wall structure
is represented by two-dimensional tissue maps determined by staining
chest wall cross sections to identify connective tissue, muscle, fat, carti-
lage, and bone, scanning the stained cross sections at 300 dpi, and pro-
cessing the scanned images to assign a tissue type to each pixel. Each
pixel of the tissue map is then assigned a sound speed, density, and ab-
sorption value determined from published measurements to be representa-
tive of the local tissue type. Computational results for wavefront distortion
including amplitude fluctuations, arrival time fluctuations, and waveform
distortion show qualitative agreement with measurements performed on
the same specimens [Hinkelman er al., 1. Acoust. Soc. Am. 101, 2365
2373 (1997)]. Visualization of simulated tissue-ultrasound interactions in
the chest wall shows possible mechanisms for image aberration in
echocardiography, including effects due to reflection and diffraction from
rib structures.

1844 J. Acoust. Soc. Am., Vol. 104, No. 3, Pt. 2, September 1998

2aPAb6. Time-domain ultrasound diffraction tomography. T.
Douglas Mast (Appl. Res. Lab., Penn State Univ., University Park, PA
16802, mast@sabine.acs.psu.edu)

A quantitative ultrasonic imaging method employing time-domain
scattering data is presented. This method provides tomographic images of
inhomogeneous media using scattering measurements made on a surface
surrounding the medium of interest, e.g., on a circle for two-dimensional
problems or on a sphere for three-dimensional problems. These scattering
data are used to construct a time-domain analog of the far-field scattering
operator. Images of compressibility variations are then reconstructed using
a coherent combination of the far-field scattered waveforms, delayed and
summed in a manner that numerically focuses on the unknown medium.
This approach is closely related to synthetic aperture imaging; however,
unlike conventional synthetic-aperture methods, the present method pro-
vides quantitative reconstructions of compressibility variations, analogous
to frequency-compunded filtered backpropagation images weighted by the
spectrum of the incident wave. Example reconstructions, obtained using
synthetic data for two-dimensional scattering of wideband pulses, show
that the time-domain reconstruction method can provide image quality
superior to single-frequency reconstructions for objects of size and con-
trast relevant to medical imaging problems such as ultrasonic mammog-
raphy. Reconstructions also illustrate the dependence of image quality on
the number of incident-wave insonifications and on the range of scattering
angles available for measurements.
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